高盐高油对餐厨垃圾厌氧发酵酶活性及产VFAs的影响
2021-06-02谷士艳闫屹嵩张文一孙继阳
谷士艳,闫屹嵩,张文一,孙继阳,张 敏,李 轶
高盐高油对餐厨垃圾厌氧发酵酶活性及产VFAs的影响
谷士艳,闫屹嵩,张文一,孙继阳,张 敏,李 轶※
(沈阳农业大学工程学院,沈阳 110866)
为探究高盐高油对厌氧发酵产酸及相关酶活性的影响,该研究以餐厨垃圾为发酵原料,在接种物质量为30%、TS(Total Solids)为8%、温度为35 ℃、初始pH值为7的条件下进行批式厌氧发酵试验,研究盐、油质量浓度为5、7、9、11、13、16 g/L的6个条件对发酵过程中的SCOD(Solluted Chemical Oxigen Demand)、VFAs(Volatile Fatty Acids)、淀粉酶、蛋白酶、辅酶F420和脱氢酶活性的影响。结果表明:随着盐油浓度的提高,SCOD峰值下降了23%~38%,并出现了2~3 d的延迟;高盐高油条件下产酸以丁酸为主,丙酸、乙酸和异戊酸含量次之,正己酸、异丁酸、正戊酸的含量最低,不同盐油条件下VFAs各组分比例差距较小;相关酶活性峰值均降低了5%~35%,相关酶活性峰值均推迟了3~6 d出现,盐油浓度越高抑制现象越明显。研究结果可为高盐高油对厌氧发酵的影响和后续试验提供参考。
垃圾;发酵;酶活性;盐分;油脂;挥发性脂肪酸(VFAs)
0 引 言
餐厨垃圾是中国城市生活垃圾的重要组成部分,调查显示北京市朝阳区日均餐厨垃圾产生量约为282 t/d,单个餐饮单位餐厨垃圾日均产生量为51.66 kg/d[1]。餐厨垃圾来源广泛、成分复杂,具有富含有机物、含水率高、易腐化变质的特点[2],如果不能妥善处理将会导致卫生安全问题,滋生病菌对人体健康产生威胁[3],产生的气体和废水还对环境造成污染[4]。因此餐厨垃圾的减量化、无害化、资源化处理已成为国际普遍关注的焦点[5]。而采用厌氧发酵工艺可将餐厨垃圾中的有机物质转化利用,不但可以实现废弃物的资源化利用,还可以有效解决环境污染等问题[6],餐厨垃圾的有机质含量高达80%[7],富含淀粉、蛋白质是一种良好的反应原料[8]。
受餐厨垃圾的原料特性影响,发酵原料中富含大量的盐分和油脂[9],以沈阳农业大学小吃街为例,部分餐厨垃圾的部分干基盐质量分数最低为2.73 g/100 g,干基盐质量分数最高可达27.6 g/100 g;湿基油脂质量分数最低为3.03 g/100 g,湿基油脂质量分数最高可达10.8 g/100 g,同时这些油脂大量附着在原料表面还以含油肉、肥油肉的形式存在去除难度大、去除效果差、成本高[10]。餐厨垃圾中的盐分和油脂会对发酵活动产生影响[9-10],研究发现低水平的NaCl促进了水解酸化过程抑制产甲烷过程[11],当NaCl质量浓度超过6.0 g/L后,对产酸的抑制明显[12],但对厌氧发酵产酸类型影响不显著[13],随着NaCl的质量浓度从6.0 g/L进一步提高到15 g/L时,甲烷积累量降低至11.4%~25.1%[14],挥发酸最大积累量降低至25.74%~70.04%,抑制现象极其显著[15-16],高浓度的NaCl抑制酸化和产甲烷过程[17],另有研究发现高浓度的Na+也严重影响了产甲烷菌的活性[18];同时油脂也会抑制产甲烷菌活性[10],油脂浓度[19]、种类均会影响产酸过程[20],当油脂质量浓度低于4 g/L时,油脂对脂肪酸的产生略有促进作用[21],随着油脂质量浓度进一步增加至32 g/L时,挥发酸最大积累量降至50.2%[22],同时高浓度是油脂也抑制了甲烷化过程并降低辅酶F420的活性[23]。但少有研究高盐高油条件对餐厨垃圾厌氧发酵产VFAs及酶活性的影响,本试验以餐厨垃圾为原料,通过预试验和原料性质确定高盐高油的标准和试验梯度,在不同盐油浓度下进行厌氧发酵试验,通过检测厌氧发酵过程沼液中的SCOD(Solluted Chemical Oxigen Demand)、挥发性脂肪酸(Volatile Fatty Acids,VFAs)种类和含量变化及淀粉酶、蛋白酶、辅酶F420和脱氢酶活性的变化来分析高盐高油对餐厨垃圾厌氧发酵产酸过程及相关酶活性的影响,以期为高盐高油条件下餐厨垃圾厌氧发酵提供理论依据。
1 材料与方法
1.1 试验材料
餐厨垃圾取自沈阳农业大学食堂和附近小吃店,分拣后确定各类物质的比例并自行配置以保证原料的稳定性[14],餐厨垃圾中各物质含量分别为米饭40%±2.8%、肉类25%±3.2%、蔬菜15%±1.8%、面类15%±0.3%、蛋类5%±0.7%,pH值6.4±0.2,原料混合破碎处理后低温保存;接种物取自沈阳市祝家镇户用沼气池,原料的理化性质见表1。
表1 发酵原料和接种物的主要理化指标
1.2 试验方法与试验设计
本试验以餐厨垃圾为反应原料,沼液为接种物。采用中温批次厌氧发酵工艺,发酵温度(35±0.1)℃,发酵基质总固体(TS)浓度为8%,反应装料800 g。盐油的最高标准取自沈阳农业大学小吃街,多次分批取样检测后得出;最低标准取自沈阳市沈河区天柱山老年公寓和高寿府老年公寓,分批多次取样后进行预试验检测和响应面分析后确定高盐高油的最低标准近似为5 g/L。因试验样品为多点分批多次取样而来,再结合实际情况可知,混合打碎的餐厨垃圾后不存在高盐低油或低盐高油的情况,故未进行交叉试验设计。各试验组的盐油质量浓度是由高盐高油和低盐低油两种餐厨垃圾按一定比例混合后结合预试验结果确定的,根据试验梯度划分为6组试验,每组3个平行试验;各个试验组的盐油浓度如表2所示。
表2 各批次发酵的NaCl与油质量浓度
试验中添加的盐为NaCl药品[14],油为从餐厨垃圾中收集的油脂[15]。各试验组的接种物质量为30%,并用蒸馏水补足质量;试验在35 ℃的恒温水浴锅中进行,进料完毕后立即密封并接好气体收集管路。在试验过程中连续3 d产气量均低于累计产气量的1%时即可视为产气停止[24]。
1.3 数据分析方法
试验结果使用SPSS、omnic和origin进行分析。
1.4 测定项目及方法
试验原料的TS 与 VS 含量采用重量法测定,总氮采用凯氏定氮法测定,粗蛋白质含量用Folin法测得,油脂含量采用索式提取法测定,原料中的盐含量用原子吸收分光光度计检测Na+确定,用重铬酸钾法检测沼液的SCOD含量,溶液中的VFAs种类和含量用气相色谱仪测得[25],相关酶活性均使用分光法测量后计算得出。试验前6 d连续取样然后每3 d取样一次直至反应结束,检测沼液中的SCOD值、VFAs种类和含量以及淀粉酶、蛋白酶、辅酶F420和脱氢酶的活性。
2 结果与分析
2.1 高盐高油含量对反应过程中有机物溶出情况的影响
SCOD则是指发酵液中溶解性COD所占的量,该指标可以反应检测样品中含有有机物的量[26]。厌氧发酵体系中碳水化合物和蛋白质多以固相形式存在,他们在转化为VFAs之前首先需要溶解并释放至发酵液中[27],通过SCOD 可以表征发酵过程中有机物的溶出情况。各个试验组的SCOD变化如图1所示。
随着发酵活动的进行大量淀粉水解,SCOD含量先快速上升后受酸抑制影响下降,产酸和产甲烷过程受到抑制,相关微生物的生命活动使SCOD含量下降,随后相关微生物和酶恢复活性使SCOD含量上升,然后随着反应进行下降直至反应结束。随着反应进行,盐油浓度的提高使得SCOD含量峰向后拖延了1~3 d到来;随着盐油浓度的增加,抑制现象更加明显,SCOD的峰值出现了明显的差距,SCOD的峰值从第一组的715.43 g/L提升到最高的889.78 g/L,随后快速大幅下降到最低值551.51 g/L,最低值较第一组降低23%,较最高值降低38%,高盐高油抑制的现象显著。该现象与王权、赵建伟等的结论基本一致[26-27],本文的抑制起始浓度为5 g/L略低于王权等的6 g/L,与本文所选的餐厨垃圾原料有关,本试验原料中含有55%的易水解酸化的淀粉类物质,远高于王权等35%淀粉类物质含量,导致高盐高油的抑制起始浓度降低。盐油抑制使餐厨垃圾内各种原料的SCOD特征峰均延后1~3d出现,各种原料SCOD特征峰的出现时间和顺序与林志龙的结果略有延迟但基本相符[28]。
2.2 高盐高油含量对反应过程中VFAs的影响
各试验组VFAs含量变化规律和各组分含量如图2所示。
由图2可发现,高盐高油对餐厨垃圾产酸有较强影响,随着盐油含量的上升,挥发酸峰延迟出现,这一现象与王权、赵建伟等的结论基本相符[26-27],但抑制起始浓度较两人的试验结果均较低,可能是餐厨垃圾的原料差异所导致的,本文所选的餐厨垃圾中含有大量易水解酸化的淀粉类物质,高盐高油的抑制、酸抑制产生了协同作用,使得抑制起始浓度下降。
各组试验在发酵过程中均产出了大量的VFAs,并因为酸抑制的原因形成了两个产酸高峰。第一个产酸高峰峰值分别为6 515.67、3 964.67、5 611.67、7 484.33、7 140.67、7 010.01 mg/L,随着盐油含量的增加,VFAs峰值先降低后增加,产酸高峰延后1~3 d出现,这可能是因为低浓度的盐油的抑制作用不强,使得产酸活动虽受抑制但产出的酸被消耗掉了[28],使得VFAs浓度下降,同时随着盐油的浓度提高抑制作用增强,又因油脂自身降解也会产生VFAs导致挥发酸高峰峰值增加[28]。第二个产酸高峰按各个试验组峰值分别为11 217、7 317.67、7 543.33、8 184.5、9 954.5及11 467 mg/L。最大VFAs浓度与试验组1相比分别降低了34.76%、32.75%、27.03%、11.26%,提高2.22%。由此可见,随着盐油含量的提高,酸积累情况会进一步加剧,VFAs峰值也延后3~6 d到来。同时高浓度的油脂也会降解产生VFAs[29],导致VFAs峰值会随着盐油含量的增加而增加[30],餐厨垃圾中高浓度的盐油对厌氧发酵的产酸过程影响强烈。
各组试验的VFAs含量变化规律与SCOD含量变化规律相符,VFAs峰与SCOD峰出现时间相差不大,高盐高油对水解、产甲烷过程的抑制导致峰值的出现时间相差较大[26]。
图3为各反应器中VFAs各组分含量比例随时间的变化。当各反应器VFAs达到最大值时,各反应器中正丁酸含量最高,约占54%~75%;随后是丙酸、乙酸和异戊酸,三者含量相近,约占10%~20%;正己酸、异丁酸、正戊酸的百分含量最低,仅占1%~8%。进一步研究发现各反应器VFAs达到最大值时各组分百分比相差不明显。这一结果表明盐分和油脂对餐厨垃圾厌氧发酵产VFAs组分影响不显著[31],但本试验丁酸含量较高,这可能是因为本文的盐油含量有所提高,酸化、甲烷化过程受到抑制,导致丁酸大量积累含量上涨。
综合分析图2、图3可以发现,VFAs的变化趋势可分为3个阶段,第1阶段为酸积累阶段,在此阶段大分子有机物会先被分解为小分子物质如丁酸、己酸等[26],发酵液中VFAs浓度大幅提高,丁酸所占比例最高;第2阶段为酸转换阶段,此阶段发酵体系中VFAs浓度达到最高值,发酵体系中VFAs浓度基本平稳,VFAs的产生和消耗达到了一定程度的平衡[18],发酵液中的丁酸被分解为乙酸,同时油脂分解产生甘油进一步分解产生丙酸[26],丁酸比例下降,乙酸、丙酸比例开始上升;第3阶段为酸消耗阶段,由于大量的有机物被消耗,此阶段VFAs消耗的速度比产生快,发酵体系中的乙酸、丙酸浓度下降,但VFAs各组分比例变化不大。
2.3 盐油含量对反应过程中相关酶活性的影响
餐厨垃圾厌氧发酵过程中相关酶活性能很好的反应盐油对厌氧发酵产酸过程的影响。将相关酶的活性与SCOD,VFAs联合分析以得出更全面的结论。
在反应过程中淀粉酶和蛋白酶活性变化如图4所示,随着盐油浓度的升高,淀粉酶活性高峰出现时间也随之延后,同时酶活性下降5%~35%,盐油浓度越高抑制现象越明显;高盐高油对蛋白酶活性的抑制作用明显,随着盐油浓度提高酶活性下降7%~17%;而蛋白质较淀粉更难水解,导致蛋白酶活性的峰值来的较淀粉酶晚。在反应过程中辅酶F420和脱氢酶的活性变化如图4所示,酶活性不但受到高盐高油和挥发酸积累导致的抑制作用,也受到有机物水解情况的影响。随着盐油浓度的提升,酶活性也受到了抑制,辅酶F420活性下降8%~27%,脱氢酶活性下降5%~26%,辅酶F420和脱氢酶的活性高峰均向后延迟了3~6 d,盐油浓度越高抑制现象越明显。
试验过程中酶活性的变化规律符合餐厨垃圾的原料特性[32],各酶活性的变化规律和特征峰的出现时间与SCOD和VFAs的变化规律相符[28,33]。
3 结 论
本文研究了高盐高油对餐厨垃圾产酸及酶活性的影响,检测并分析了发酵过程中SCOD含量,VFAs和相关酶活性的变化,结论如下:
1)盐油含量的提高并没有改变有机物溶出即SCOD的变化规律,但影响了在发酵过程中SCOD的峰值和出现时间,随着盐油浓度的提高,SCOD峰值从第一组的715.43 g/L略微提升到了最高的889.78 g/L随后快速大幅下降直到551.51 g/L,较第一组降低了23%,较最高值降低了38%,峰值出现时间均有2~3 d的推迟。试验结果表明随着盐油浓度的提高,抑制现象愈发强烈。
2)高盐高油延迟了VFAs高峰的出现时间,并导致了VFAs的积累。随着盐油含量的提高,VFAs的积累峰的峰值也先下降后增加。在高盐高油条件下餐厨垃圾的产酸以丁酸为主,约占54%~75%;丙酸、乙酸和异戊酸,三者含量相近,约占10%~20%;正己酸、异丁酸、正戊酸的含量最低,仅占1%~8%,盐油条件对产酸过程中各组分含量比例的影响不大。
3)随着盐油含量的提高,酶活性均有所降低,淀粉酶活性峰值降低5%~35%、蛋白酶活性峰值降低7%~17%、辅酶F420活性峰值降低8%~27%,脱氢酶活性峰值5%~26%,相关酶活性峰值均推迟了3~6 d出现,盐油浓度越高抑制和推迟现象越明显。
[1] 王桂琴,陈日晖,张丽,等. 北京市朝阳区餐厨垃圾产生量调查及特性分析[J]. 中国资源综合利用,2020,38(9):41-44. Wang Guiqin, Chen Rihui, Zhang Li, et al. Investigation and characteristic analysis of kitchen waste in chaoyang district of Beijing[J]. China Resources Comprehensive Utilization, 2020, 38(9): 41-44. (in Chinese with English abstract)
[2] Peter C Slorach, Harish K Jeswani, Rosa Cué, et al. Assessing the economic and environmental sustainability of household food waste management in the UK: Current situation and future scenarios[J]. Science of the Total Environment, 2020, 710: 135580.
[3] 刘臻. 关于餐厨垃圾无害化处理与资源化利用的思考[J]. 环境与发展,2020,32(9):217-218. Liu Zhen. Thinking about the harmless treatment and resource utilization of kitchen waste[J]. Environment and Development, 2020, 32(9): 217-218. (in Chinese with English abstract)
[4] Li Yanzeng, Chen Zhou, Peng Yanyan, et al. Changes in aerobic fermentation and microbial community structure in food waste derived from different dietary regimes[J]. Bioresource Technology, 2020, 317: 123948.
[5] Zhang Cunsheng, Su Haijia, Jan Baeyens, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392.
[6] 任霞,徐静. 中国餐厨垃圾处理技术专利申请现状分析[J]. 中国发明与专利,2020,17(6):78-83. Ren Xia, Xu Jing. Analysis of patent application current status of kitchen waste treatment technology in China[J]. China Invention & Patent, 2020, 17(6): 78-83. (in Chinese with English abstract)
[7] Esra Uçkun Kiran, Antoine P Trzcinski, Wun Jern Ng, et al. Bioconversion of food waste to energy: A review[J]. Fuel, 2014, 134: 389-399.
[8] 炊春萌,李保国,刘莉,等. 餐厨垃圾厌氧发酵研究进展[J]. 食品与发酵科技,2020,56(4):60-64,112. Chui Chunmeng, Li Baoguo Liu Li, et al. Advances in anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences & Technology, 2020, 56(4): 60-64, 112. (in Chinese with English abstract)
[9] 王权,宫常修,蒋建国,等. NaCl对餐厨垃圾厌氧发酵产VFA浓度及组分的影响[J]. 中国环境科学,2014,34(12):3127-3132. Wang Quan, Gong Changxiu, Jiang Jianguo, et al. Effect of NaCl content on VFA concentration and composition during anaerobic fermentation of kitchen waste[J]. China Environmental Science, 2014, 34(12): 3127-3132. (in Chinese with English abstract)
[10] 李小风. 油脂对餐厨垃圾厌氧消化抑制效应的试验研究[D]. 重庆:重庆大学,2010. Li Xiaofeng. Study on Inhibitory Mechanism of Lipid in Anaerobic Digestion for Food Waste[D]. Chongqing: Chongqing University, 2010. (in Chinese with English abstract)
[11] 雷中方. 高浓度钠盐对废水生物处理系统的失稳影响综述[J]. 工业水处理,2000,20(4):6-9. Lei Zhongfang. Malfunction effects of sodium salts with high concentration on existing wastewater biological treatment systems[J]. Industrial Water Treatment, 2000, 20(4): 6-9. (in Chinese with English abstract)
[12] 陶治平,赵明星,阮文权. 氯化钠对餐厨垃圾厌氧发酵产沼气影响[J]. 食品与生物技术学报,2013,32(6):596-602. Tao Zhiping, Zhao Mingxing, Ruan Wenquan. Effect of sodium chloride on biogas generation of kitchen waste by anaerobic fermentation[J]. Journal of Food Science and Biotechnology, 2013, 32(6): 596-602. (in Chinese with English abstract)
[13] Su Gaoqiang, Wang Shuying, Yuan Zhiguo, et al. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms[J]. Journal of Bioscience and Bioengineering, 2016, 121(3): 293-298.
[14] 王攀,李冰心,黄燕冰,等. 含盐量对餐厨垃圾干式厌氧发酵的影响[J]. 环境污染与防治,2015,37(5):27-31. Wang Pan, Li Bingxin, Huang Yanbing, et al. Effect of salt content on dry anaerobic fermentation for food waste[J]. Environmental Pollution & Control, 2015, 37(5): 27-31. (in Chinese with English abstract)
[15] Zhao Jianwei, Liu Yiwen, Wang Dongbo, et al. Potential impact of salinity on methane production from food waste anaerobic digestion[J]. Waste Management, 2017, 67: 308-314.
[16] 徐家英,王楠楠. 餐厨垃圾厌氧消化过程中盐度对产气量的毒性抑制研究[J]. 中国资源综合利用,2020,38(9):5-7. Xu Jiaying, Wang Nannan. Study on toxicity inhibition of salinity on gas production in anaerobic digestion of kitchen waste[J]. China Resources Comprehensive Utilization, 2020, 38(9): 5-7. (in Chinese with English abstract)
[17] Cao Xianyan, Zhao Youcai. The influence of sodium on biohydrogen production from food waste by anaerobic fermentation[J]. Journal of Material Cycles and Waste Management, 2009, 11(3): 244-250.
[18] Hierholtzer A, Akunna J C. Modelling sodium inhibition on the anaerobic digestion process[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2012, 66(7): 1565-1573.
[19] 任连海,黄燕冰,王攀,等. 含油率对餐厨垃圾干式厌氧发酵的影响[J]. 环境科学学报,2015,35(8):2534-2539. Ren Lianhai, Huang Yanbing, Wang Pan, et al. Effect of oil contents on dry anaerobic digestion of restaurant garbage[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2534-2539. (in Chinese with English abstract)
[20] 王梦芝,王曙,潘晓花,等. 4种油脂对瘤胃微生物体外产气及辅酶F_(420)的影响[J]. 动物营养学报,2011,23(10):1819-1825. Wang Mengzhi, Wang Shu, Pan Xiaohua, et al. Supplementation of four different oils affects gas production and coenzyme F420 of ruminal microbe in vitro[J]. Chinese Journal of Animal Nutrition, 2011, 23(10): 1819-1825. (in Chinese with English abstract)
[21] Angelidaki I, Petersen S P, Ahring B K. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite[J]. Applied microbiology and biotechnology, 1990, 33(4): 469-72
[22] Zhang Wanqin, Lang Qianqian, Fang Ming, et al. Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste[J]. Bioresource Technology, 2017, 232: 304-312
[23] 李诗宣,温沁雪,季业,等. 甘油投加对餐厨垃圾厌氧产酸性能的影响[J]. 环境科学学报,2020,40(10):3621-3628. Li Shixuan, Wen Qinxue, Ji Ye, et al. The effect of adding glycerin on volatile fatty acid production from anaerobic fermentation of food waste[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3621-3628. (in Chinese with English abstract)
[24] 李超,刘刚金,刘静溪,等. 基于产甲烷潜力和基质降解动力学的沼气发酵物料评估[J]. 农业工程学报,2015,31(24):262-268. Li Chao, Liu Gangjin, Liu Jingxi, et al. Organic substrates evaluation based on biochemical methane potential and degradation kinetic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 262-268. (in Chinese with English abstract)
[25] 李森. 沼液回流对玉米秸秆厌氧发酵特性的影响研究[D]. 沈阳:沈阳农业大学,2018. Li Sen. Study on the Effect of the Reflux of Biogas Slurry on the Anaerobic Fermentation Characteristics of Corn Straw[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract)
[26] 王权. 油脂及盐对餐厨垃圾产VFAs的影响研究及工程示范[D]. 北京:清华大学,2015. Wang Quan. Research on Enhanced Production of Volatile Fatty Acid from Food Waste: Effects of Salt and Grease[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)
[27] 赵建伟. 盐度和油脂对餐厨垃圾和剩余污泥厌氧发酵产短链脂肪酸的影响与机理[D]. 长沙:湖南大学,2018. Zhao Jianwei. Effects and Mechanisms of Salinity, Fat, Oil and Grease (FOG) on Short Chain Fatty Acids Production from Food Waste and Waste Activated Sludge Anaerobic Fermentation[D]. Changsha: Hunan University, 2018. (in Chinese with English abstract)
[28] 林志龙. 餐厨垃圾代表性组分厌氧发酵产甲烷性能研究[D]. 福州:福建师范大学,2017. Lin Zhilong. Methanogenesis Performance of Representative Components of Kitchen Waste in Anaerobic Fermentation[D]. Fuzhou: Fujian Normal University, 2017. (in Chinese with English abstract)
[29] Li Yangyang, Jin Yiying, Borrion Aiduan, et al. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste[J]. Waste Management (New York, N. Y. ), 2018, 73: 156-154.
[30] 侯晓聪,苏海佳. 高盐浓度对厌氧发酵产甲烷的影响[C]. 2015年中国化工学会年会论文集,2015. Hou Xiaocong, Su Haijia. Effect of high salt concentration on methane production by anaerobic fermentation [C]. Proceedings of 2015 China Chemical Industry Society Annual Meeting, 2015.
[31] 郑明月,郑明霞,王凯军,等. 温度、pH 和负荷对果蔬垃圾厌氧酸化途径的影响[J]. 可再生能源,2012,30(4):75-79. Zheng Mingyue, Zheng Mingxia, Wang Kaijun, et al. Effect of temperature, pH and organic loading rate on anaerobic acidification pathway of fruit and vegetable waste[J]. Renewable Energy Resources, 2012, 30(4): 75-79. (in Chinese with English abstract)
[32] 方卉. 餐厨垃圾单组分厌氧发酵产气性能研究[D]. 重庆:西南交通大学,2019. Fang Hui. Experimental Study on Gas Production of Anaerobic Digestion of Food Waste Single Component[D]. Chongqing: Southwest Jiaotong University, 2019. (in Chinese with English abstract)
[33] 蒋彬,吕锡武,朱建国,等. 餐厨垃圾生化产甲烷潜力的数学模拟[J]. 环境工程学报,2017,11(3):1871-1877. Jiang Bin, Lyu Xiwu, Zhu Jianguo, et al. Mathematical simulations biochemical methane potential of food waste[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1871-1877. (in Chinese with English abstract)
Effects of high salt and high oil content on anaerobic fermentation enzyme activity and production of VFAs in food waste
Gu Shiyan, Yan Yisong, Zhang Wenyi, Sun Jiyang, Zhang Min, Li Yi※
(,,110866,)
Food waste is an excellent raw material for anaerobic fermentation, due to its rich in starch, protein, and high content of organic matter. But there are relatively high concentrations of salt and oil difficult to remove, particularly on a high removal cost in anaerobic fermentation. This study aims to explore the effects of high salt and oil in eat hutch garbage on the acid production and related enzyme activities of anaerobic fermentation. Taking food waste as the raw material in fermentation, a batch anaerobic fermentation test was carried out under the conditions of inoculation content of 30%, the Total Solid (TS) of 8%, the temperature of 35℃, and the initial pH of 7. A minimal inhibitory concentration test was selected to determine the high concentration in salt and oil. Initial raw materials were divided into six test groups for anaerobic fermentation according to the maximum concentration and gradient of salt and oil, including 5, 7, 9, 11, 13, 16 g/L. A detection was performed on the Soluble Chemical Oxygen Demand (SCOD) in biogas slurry, to determine the type and content of Volatile Fatty Acids (VFAs), as well as activity change of amylase, protease, coenzyme F420, and dehydrogenase. The experimental results are as follows. The SCOD did not change, but the peak SCOD decreased by 23%-38% with a 2-3 d delay, indicating a more intense inhibition phenomenon with the increase of salt/oil concentration. The high salt/oil content delayed the occurrence time for the peak of VFAs, leading to the accumulation of VFAs. The accumulation peak of VFAs decreased first and then increased with the increase of the salt/oil content, where the accumulation concentration of VFAs decreased by 34.76%. Moreover, the decomposition of oil-produced VFAs contributed to the increase in the concentration peak of VFAs. Butyric acid (accounting for 54%-75%) was the main acid product under the condition of high salt/oil. There were similar contents (about 10%-20%) of propionic acid, acetic acid, and isovaleric acid. The lowest contents were only 1%-8% of n-hexanoic acid, isobutyric acid, and n-valeric acid. There were few different proportions of VFAS components under various conditions of high salt/oil. The peak values decreased by 5%-35%, 7%-17%, 8%-27%, 5%-26% for the activity of amylase, protease, coenzyme F420, and dehydrogenase, respectively. Furthermore, the peak value of related enzyme activity all appeared 3-6 d later. There was more obvious inhibition of enzyme activity as the concentration of salt/oil increased. Therefore, the high salt/oil inhibited the dissolution of organic matter in anaerobic fermentation, further inhibiting the activities of hydrolase and methanase as a result of the accumulation of VFAs. This finding can provide a promising theoretical basis for the effect of high salt/oil on anaerobic fermentation.
wastes; fermentation; enzyme activity;salinity; oils and fats; volatile fatty acids (VFAs)
谷士艳,闫屹嵩,张文一,等. 高盐高油对餐厨垃圾厌氧发酵酶活性及产VFAs的影响[J]. 农业工程学报,2021,37(6):228-234.doi:10.11975/j.issn.1002-6819.2021.06.028 http://www.tcsae.org
Gu Shiyan, Yan Yisong, Zhang Wenyi, et al. Effects of high salt and high oil content on anaerobic fermentation enzyme activity and production of VFAs in food waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.028 http://www.tcsae.org
2020-12-01
2021-02-22
辽宁省自然基金面上项目(20170540813,2015020635);辽宁省教育厅项目;沈阳市科技局课题(18-013-0-86)
谷士艳,副教授,博士,研究方向为新能源及农业生物环境工程技术。Email:gushiyan@syau.edu.cn
李轶,副教授,博士,研究方向为新能源及农业生物环境工程技术。Email:yilisyau2000@163.com
10.11975/j.issn.1002-6819.2021.06.028
X713
A
1002-6819(2021)-06-0228-07