APP下载

NRG1β对脑缺血再灌注大鼠P35/P25表达和细胞凋亡影响

2021-04-12南宝王悦朱琳刘翠张睿

青岛大学学报(医学版) 2021年6期

[摘要] 目的 探讨脑缺血再灌注损伤后神经调节素1β(NRG1β)对Cdk5信号通路中P35/P25表达和细胞凋亡的影响。

方法 成年健康雄性Wistar大鼠50只,假手术组(Sham组)10只,其余用线栓法建立大脑中动脉缺血再灌注损伤模型,将造模成功30只大鼠随机分为模型组(MCAO组)、治疗组(NRG组)和抑制剂组(Ros组),每组10只。NRG组和Ros组大鼠经颈内动脉分别注射NRG1β和Roscovitine各5 μL进行干预治疗,Sham组和MCAO组大鼠注射0.1 mol/L PBS 5 μL。用改良神经功能缺损评分(mNSS评分)测试大鼠神经功能,甲苯胺蓝染色观察神经细胞形态结构,TUNEL法检测细胞凋亡,免疫组化和Western blot方法检测神经细胞内P35/P25的表达。

结果 与Sham组比较,MCAO组mNSS评分显著升高,凋亡神经细胞数量增多,P35/P25表达显著增强;NRG组和Ros组大鼠神经细胞形态结构较MCAO组显著改善,mNSS评分下降,细胞凋亡减少;NRG组大鼠P35/P25表达较MCAO组显著下降,差异均有显著性(F=74.34~151.31,Plt;0.01)。NRG组与Ros组各指标比较差异均无显著性(Pgt;0.05)。

结论 脑缺血再灌注损伤发生后,NRG1β可以抑制Cdk5信号通路中P35/P25的表达,减少神经细胞凋亡,发挥神经保护作用。

[关键词] 神经调节素;脑缺血;再灌注损伤;P35/P25;细胞凋亡;大鼠,Wistar

[中图分类号] R743.3

[文献标志码] A

[文章编号] 2096-5532(2021)06-0892-05

doi:10.11712/jms.2096-5532.2021.57.180

[开放科学(资源服务)标识码(OSID)]

[网络出版] https://kns.cnki.net/kcms/detail/37.1517.R.20211101.1333.002.html;2021-11-02 11:26:02

EFFECT OF NEUREGULIN1Β ON THE EXPRESSION OF P35/P25 AND APOPTOSIS AFTER CEREBRAL ISCHEMIA/REPERFUSION INJURY IN RATS

NAN Bao, WANG Yue, ZHU Lin, LIU Cui, ZHANG Rui

(Institute of Integrative Medicine of Qingdao University Medical College,Qingdao 266021, China)

[ABSTRACT]Objective To investigate the effect of neuregulin1β (NRG1β) on the expression of P35/P25 and apoptosis after cerebral ischemia/reperfusion injury in rats.

Methods A total of 50 healthy male adult Wistar rats were selected, sham-oper-ation group (Sham group) 10 rats, and the suture method was used to establish a model of middle cerebral artery ischemia/reperfusion injury. After successful modeling, 30 rats were randomly divided into model group (middle cerebral artery occlusion (MCAO) group), treatment group (NRG group), and inhibitor group (Ros group), with 10 rats in each group. The rats in the NRG and Ros groups were given injection of NRG1β 5 μL and Roscovitine 5 μL, respectively, via the internal carotid artery, and those in the Sham and MCAO groups were given injection of 0.1 mol/L PBS 5 μL at the same time. Modified Neurological Severity Score (mNSS) was used to evaluate neurological function; toluidine blue staining was used to observe the morphological structure of neural cells; terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was used to measure cell apoptosis; immunohistochemistry and Western blot were used to measure the expression of P35/P25 in neural cells.

Results Compared with the Sham group, the MCAO group had significant increases in mNSS score, neural cell apoptosis, and expression of P35/P25; compared with the MCAO group, the NRG group and the Ros group had significant improvement in the morphological structure of neural cells and significant reductions in mNSS score and cell apoptosis; compared with the MCAO group, the NRG group had a significant reduction in the expression of P35/P25 (F=74.34-151.31,Plt;0.01). There were no significant differences in the above indices between the NRG group and the Ros group (Pgt;0.05).

Conclusion After cerebral ischemia/reperfusion injury, NRG1β can exert a neuroprotective effect by inhibiting the expression of P35/P25 in the cyclin-dependent kinase 5 signaling pathway and reducing neural cell apoptosis.

[KEY WORDS]neuregulins; brain ischemia; reperfusion injury; P35/P25; apoptosis; rats, Wistar

神经调节素1β(NRG1β)可以通过抑制脑缺血后基质金属蛋白酶9(MMP9)等炎性因子的表达,下调水通道蛋白4(AQP4)水平而参与神经细胞存活以及功能修复[1-3]。大鼠大脑中动脉缺血再灌注(MCAO/R)损伤表现出神经功能障碍,预防性应用NRG1β干预可显著减小脑梗死体积以及神经细胞凋亡数量[4],其机制可能与NRG1β的抗炎作用有关,但具体机制有待研究证实。在中枢神经系统生长分化过程中,细胞周期素依赖性激酶-5(Cdk5)可调节神经细胞的生存、移行和突触功能等[5-7]。其中,MCAO/R后缺血半影区的细胞凋亡与Cdk5的过度激活有密切关系,Cdk5抑制剂Roscovitine可阻断其作用[8]。MCAO/R损伤发生时,神经细胞内钙离子浓度升高而激活钙蛋白酶,导致Cdk5特定调节亚单位p35裂解成p25[9],其活性存在的主要形式为Cdk5/p25,许多细胞凋亡相关底物均可与Cdk5/p25结合而启动细胞凋亡[10]。张睿等[11-12]研究显示,大鼠MCAO/R后应用NRG1β可显著改善其神经行为功能,但其作用机制尚未完全阐明。本研究试图探讨NRG1β对MCAO/R后大鼠的神经保护作用及其与Cdk5信号通路的关系,进一步阐明其神经保护作用机制。现将结果报告如下。

1 材料与方法

1.1 实验动物

健康雄性Wistar大鼠50只,购自山东省实验动物中心,SPF级,体质量240~260 g。室温(23±2)℃条件下分笼饲养,12 h/12 h昼夜自然光照,自由饮食。术前禁食12 h,不禁水。

1.2 模型制备及实验分组

随机取10只大鼠作为假手术组(Sham组),其余40只应用线栓法制备MCAO/R模型[13]。Sham组大鼠线栓置入颈内动脉(ICA)10 mm,不入颅。行改良神经功能缺损评分(mNSS)[14],评分>10分视为造模成功,不成功的10只大鼠剔除。将造模成功的30只大鼠随机分为模型组(MCAO组)、治疗组(NRG组)和抑制剂组(Ros组),每组10只。

1.3 各组处理方法

MCAO组:缺血2 h后拔除线栓,经颈外动脉(ECA)残端向ICA内注射0.1 mol/L PBS 5 μL;NRG组:缺血2 h后拔除线栓,经ECA向ICA内注射NRG1β(Ramp;D Systems,USA)5 μL(2 μg/kg);Ros组:缺血2 h后拔除线栓,经ECA向ICA注射Roscovitine5 μL;Sham组拔除线栓后同步注射0.1 mol/L PBS 5 μL。所有大鼠均于再灌注22 h取材检测。

1.4 检测指标及方法

1.4.1 神经行为功能评价 各组大鼠取材前均采用mNSS评分评定神经行为功能[14],评分最低为0分,最高18分;得分越高,神经功能损伤越严重。

1.4.2 甲苯胺蓝染色检测神经细胞形态 以100 g/L水合氯醛3 mL/kg腹腔注射麻醉大鼠(每组随机取5只),经心脏灌注固定取脑。常规脱水、透明、包埋,自视交叉后方连续冠状位切片(厚度5 μm),贴片;甲苯胺蓝染色。每张切片在高倍光镜(400倍)下随机观察顶-额叶皮质缺血半影区4个不重叠的视野,根据细胞的轮廓、膜完整性、染色深度、胞核固缩、尼氏体等指标判断细胞损伤变性程度,计数损伤的变性细胞数,计算变性细胞指数(DCI, DCI =变性细胞数/细胞总数×100%)。

1.4.3 TUNEL方法检测细胞凋亡 石蜡切片脱蜡入水,按TUNEL试剂盒(Roche公司,美国)说明操作,HRP-抗体孵育,DAB显色,苏木精复染。光镜下呈棕黄色者视为凋亡细胞。阴性对照切片以PBS替代TdT探针染色,不着色。在顶-额叶皮质缺血半影区随机选4个视野,高倍光镜(400倍)下计数凋亡细胞数,计算凋亡指数(ACI, ACI=凋亡细胞数/细胞总数×100%)。

1.4.4 免疫组化方法检测P35/P25阳性细胞 石蜡切片脱蜡、水化;热修复抗原,以体积分数0.03的H 2O 2孵育,PBS冲洗;然后滴加p35/p25兔单抗(C64B10,CST Co. Ltd. USA,1∶300),37 ℃孵育1 h,PBS冲洗;滴加山羊抗兔IgG/HRP二抗(PV-6001,北京中杉金桥公司),37 ℃孵育,PBS冲洗,DAB显色,苏木精复染,胞浆或(和)胞核呈棕黄色者为阳性细胞。阴性对照切片不加一抗,以PBS替代染色,不出现阳性着色。在顶-额叶皮质缺血半影区随机选4个高倍(400倍)视野,计数阳性细胞数,计算阳性细胞指数(PCI,PCI=阳性细胞数/细胞总数×100%)。

1.4.5 Western blot检测P35/P25表达 取大鼠顶-额叶皮质缺血半影区脑组织100 mg,提取总蛋白,BCA法测定蛋白浓度。按SDS-PAGE试剂盒(碧云天生物研究所)方法制备100 g/L分离胶和50 g/L积层胶,加样、电泳、转膜、封闭,然后加兔抗鼠一抗p35/p25(稀释度为1∶1 000),4 ℃孵育过夜,TBST洗膜。加入山羊抗兔二抗IgG室温孵育1 h,TBST洗膜显影,用Bio-Rad 2000型成像系统扫描,Image J软件分析p35/p25及内参照β-actin灰度。计算目的蛋白相对含量(目的蛋白灰度/内参灰度值×100%)。

1.5 统计学分析

应用SPSS 20.0软件进行统计学分析。计量资料以±s形式表示,多组间比较采用单因素方差分析,两两比较采用Bonferroni(B)法。以Plt;0.05为差异有显著性。

2 结果

2.1 各组大鼠mNSS评分比较

与Sham组相比较,MCAO组、NRG组、Ros组mNSS评分显著升高,NRG组、Ros组mNSS评分较MCAO组均显著下降,差异有显著意义(F=151.31,Plt;0.05);NRG组mNSS评分较Ros组略有下降,但差异无显著性(Pgt;0.05)。见表1。

2.2 各组大鼠神经细胞损伤程度比较

MCAO组的神经细胞DCI较Sham组升高,NRG组和Ros组DCI较MCAO组显著降低,差异有显著性(F=128.21,Plt;0.05);NRG组与Ros组DCI比较差异无显著性(Pgt;0.05)。见图1和表1。

2.3 各组神经细胞凋亡比较

MCAO组ACI较Sham组显著升高,NRG组和Ros组ACI较MCAO组明显下降,差异均有显著性(F=136.79,Plt;0.01);NRG组与Ros组ACI比较差异无显著性(Pgt;0.05)。见图2和表1。

2.4 各组大鼠P35/P25阳性细胞数比较

MCAO组P35/P25 PCI较Sham组明显升高,NRG组较MCAO组明显减少,差异有显著性(F=105.00,Plt;0.01);MCAO组与Ros组PCI比较差异无显著性(Pgt;0.05)。见图3和表1。

2.5 各组P35/P25表达比较

Western blot结果显示,MCAO组P35/P25表达较Sham组明显增强,NRG组较MCAO组明显降低,差异有显著性(F=74.34,Plt;0.01);MCAO组与Ros组P35/P25表达比较差异无统计学意义(Pgt;0.05)。见图4和表1。

3 讨论

脑缺血再灌注引起的神经损伤主要包括兴奋性氨基酸释放、氧化应激、炎症反应、胶质反应、细胞内钙超载和神经细胞凋亡等病理机制。脑缺血中心区的神经细胞死亡以坏死为主,半影区则以凋亡为主。因此,抑制凋亡可以挽救处于早期凋亡状态的神经元,发挥神经保护作用[15]。神经调节素(NRGs)对脑缺血损伤诱导的神经细胞凋亡和胶质反应具有显著的抑制作用[4]。XU等[16]的研究显示,在永久性MCAO大鼠模型,脑缺血半影区的NRG1β表达显著增强。NRG1β激活其功能性受体酪氨酸激酶受体ErbB3或ErbB4,继而激活酪氨酸激酶,催化多肽链中的酪氨酸磷酸化,进而激活下游信号分子,发挥神经保护作用。

在神经变性疾病如阿尔茨海默病(AD)和帕金森病(PD)的病理生理过程中,Cdk5分子的活性失调[17-18],继而引起其底物蛋白过度磷酸化,最终导致神经细胞凋亡和死亡[19]。RASHIDIAN等[20]对脑缺血模型研究发现,脑缺血后神经细胞内Cdk5过度激活,Cdk5通路过度激活可以解聚细胞骨架,从而导致神经细胞死亡。LOVE[21]的研究发现,p25较p35更能促进脑卒中后Cdk5的过度激活。因此,TAN等[22]提出,通过阻断Cdk5信号通路可能减少神经细胞死亡,从而为保护脑卒中损伤提供可行的治疗策略。本文研究结果显示,大鼠脑缺血2 h再灌注22 h后出现明显的神经行为功能障碍,缺血半影区神经细胞凋亡显著增加,神经细胞P35/P25表达显著增强;应用NRG1β干预治疗后,神经细胞P35/P25表达以及细胞凋亡率均有下降,神经细胞形态结构显著改善,mNSS评分显著下降,这与应用Cdk5特异性抑制剂Roscovitine的结果相似。表明NRG1β的作用机制可能是:通过降低P35/P25表达,进而抑制Cdk5的异常活化,从而发挥其抗凋亡、神经保护作用。新近研究发现,NRG-1在少突胶质细胞分化过程中具有重要作用,Nrg1-ErbB信号可能促进小胶质细胞活化,从而导致环磷酰胺诱导的膀胱炎的机械性超敏化,调节Nrg1-ErbB信号可能对治疗膀胱疼痛综合征/间质性膀胱炎(BPS/IC)疼痛症状具有治疗价值,而且这一作用机制与神经纤维髓鞘修复有密切关系[23]。DING等[24]研究认为,NRG-1可以通过PI3K-AKT-mTOR信号通路促使星形胶质细胞反向分化为少突胶质细胞,从而修复脊髓内神经纤维髓鞘的损伤。由此推测,NRG-1的释放呈递对中枢神经髓鞘再生过程有重要作用,与Cdk5调节神经细胞的生存、移行和突触功能有一定关系,但其详细机制有待进一步研究。

综上所述,NRG1β通过降低P35/P25的表达而抑制Cdk5信号通路的异常活化,从而发挥一定的抗凋亡以及神经保护作用。

[参考文献]

[1]LI Q, ZHANG R, GE Y L, et al. Effects of neuregulin on ex-pression of MMP-9 and NSE in brain of ischemia/reperfusionrat[J]. Journal of Molecular Neuroscience: MN, 2009,38(2):207-215.

[2]CHEN Y, ZHANG M Z, LI Q, et al. Interfering effect and mechanism of neuregulin on experimental dementia model in rats[J]. Behavioural Brain Research, 2011,222(2):321-325.

[3]ZHANG R, LIU C, JI Y Q, et al. Neuregulin-1β plays a neuroprotective role by inhibiting the Cdk5 signaling pathway after cerebral ischemia-reperfusion injury in rats[J]. Journal of Molecular Neuroscience, 2018,66(2):261-272.

[4]LI Y G, XU Z F, FORD G D, et al. Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia[J]. Brain Research, 2007,1184:277-283.

[5]ZHANG J, CICERO S A, WANG L, et al. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(25):8772-8777.

[6]JESSBERGER S, GAGE F H, EISCH A J, et al. Making a neuron: Cdk5 in embryonic and adult neurogenesis[J]. Trends in Neurosciences, 2009,32(11):575-582.

[7]LAI K O, IP N Y. Recent advances in understanding the roles of Cdk5 in synaptic plasticity[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2009,1792(8):741-745.

[8]CZAPSKI G A, GASSOWSKA M, SONGIN M, et al. Alterations of cyclin dependent kinase 5 expression and phosphorylation in amyloid precursor protein (APP)-transfected PC12 cells[J]. FEBS Letters, 2011,585(8):1243-1248.

[9]KALATHUR R K, HERN NDEZ-PRIETO M A, FUTSCHIK M E. Huntington’s disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database[J]. BMC Neurology, 2012,12:47.

[10]TIMSIT S, MENN B. Cyclin-dependent kinase inhibition with roscovitine: neuroprotection in acute ischemic stroke[J]. Clinical Pharmacology and Therapeutics, 2012,91(2):327-332.

[11]张睿. Cdk5通路在脑缺血再灌注损伤中的作用及神经调节素1β抗凋亡机制研究[D]. 青岛:青岛大学, 2017.

[12]张睿,刘翠,季亚清,等. 神经调节素1β对脑缺血再灌注损伤后Cdk5/p25表达的影响[C]. 第十四次中国中西医结合实验医学学术研讨会论文汇编, 2017-10-28.

[13]LONGA E Z, WEINSTEIN P R, CARLSON S, et al. Rever-

sible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989,20(1):84-91.

[14]CHEN J, SANBERG P R, LI Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001,32(11):2682-2688.

[15]魏秀娥,荣良群,张清秀,等. Rho激酶抑制剂盐酸法舒地尔对脑缺血再灌注损伤大鼠海马谷氨酸6受体表达及神经细胞凋亡的影响[J]. 中华行为医学与脑科学杂志, 2013,22(9):776-779.

[16]XU Z F, FORD B D. Upregulation of erbB receptors in rat brain after middle cerebral arterial occlusion[J]. Neuroscience Letters, 2005,375(3):181-186.

[17]QU D B, RASHIDIAN J, MOUNT M P, et al. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease[J]. Neuron, 2007,55(1):37-52.

[18]HASHIGUCHI M, SAITO T, HISANAGA S, et al. Truncation of CDK5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau[J]. The Journal of Biological Chemistry, 2002,277(46):44525-44530.

[19]BAJAJ N. Cyclin-dependent kinase-5 (CDK5) and amyotrophic lateral sclerosis[J]. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2000,1(5):319-327.

[20]RASHIDIAN J, ROUSSEAUX M W, VENDEROVA K, et al. Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo[J]. Journal of Neuroscience, 2009,29(40):12497-12505.

[21]LOVE S. Neuronal expression of cell cycle-related proteins after brain ischaemia in man[J]. Neuroscience Letters, 2003,353(1):29-32.

[22]TAN X, CHEN Y, LI J, et al. The inhibition of Cdk5 activity after hypoxia/ischemia injury reduces infarct size and promotes functional recovery in neonatal rats[J]. Neurosciences, 2015,290:552-560.

[23]CHEN J L, ZHOU X, DING H L, et al. Neuregulin-1-ErbB signaling promotes microglia activation contributing to mechanical allodynia of cyclophosphamide-induced cystitis[J]. Neurourology and Urodynamics, 2019,38(5):1250-1260.

[24]DING Z F, DAI C, ZHONG L, et al. Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury[J]. Biomedicine amp; Pharmacotherapy, 2021,134:111168.

(本文编辑 黄建乡)