APP下载

线性规划法下物流运输问题的应用研究

2021-04-06张晶

商品与质量 2021年5期
关键词:约束方程供给量运输成本

张晶

山东畜牧兽医职业学院 山东潍坊 261061

现代企业的发展离不开物流运输,在对运输路线规划问题上,已经有多种方法并基于不同的目的进行了优化改良,本文以运输成本最小化为优化目的,使用线性规划模型,解决多供给点——多需求点的运输问题[1-3]。

1 线性规划模型介绍

线性规划模型是一种特定的约束条件下,求最值的问题,其中目标函数是线性函数,约束条件是不等式,标准式如下。

其中:X=(x1,x2,x3…xn)T为决策向量;C=(c1,c2,c3…cn)为价格向量;B=(b1,b2,b3…bn)T为资源向量。

2 线性规划模型实际应用

一种货物从m 个供给地(1,2,3…m)出发,运往n 个需求点(1,2,3…n),第i 个供给地的供给量为bi(bi∈{1,2…m})第j 个需求点的需求量为di(di∈{1,2…n}),从i 地运往j 地的成本费用为cij。其中:

3 相关实例的具体应用

某地有3 个蔬菜物流园,向当地7 家蔬菜批发市场提供蔬菜,每日需求量、供给量以及运输成本如表1 所示。

表格1 供给量、需求量及运输成本

该问题有m+n 个约束方程,在供求相等的前提下,约束方程有m+n-1 个是线性独立的,因此该问题有最优解。使用表上作业法进行求解。

(1)分别算出各行和各列最小值与次小值的差值,并写入表中的最右列和最下列,如表2 所示。

表2 成本行差值与列差值

(2)在行差值和列差值中找到最大值,选择它所在的行或者列中的最小值作为优先供应点,本例中确定供给点3 先满足需求点5,需求点5 满足后将第5 列划去,如表3 所示。

表3

(3)重复以上两步操作,直至得出最优解,如表4 所示。

表4

优化后最小运输费=20×4+50×7+60×8+80×7+55×5+90×10+100×6+70×17+10×10=4260

4 结语

对于物流运输成本问题,线性规划法条件简单,计算方便,通过建立有限制条件的数学模型,达到运费最优的优化结果,为现实中企业的生产和实践提供借鉴意义。

猜你喜欢

约束方程供给量运输成本
移动机器人动力学方程的约束违约稳定方法
至少节省40%运输成本!这家动保企业跨界做物流,华南首家专注于水产行业的物流企业诞生
工程项目施工准备阶段采购与运输成本控制研究
含刚性斜杆的平面有侧移刚架内力计算1)
矿井巷道三维建模方法探讨
多体系统指标2运动方程HHT方法违约校正1)
考虑政府补贴的天然气市场供给博弈模型研究
土地财政依赖、保障房与商品房价格关系
平淡之处有文章
动态规划在运输成本中的应用