烟草与丛枝菌根真菌的共生效应研究进展
2021-03-29曹本福姜海霞陆引罡王茂胜
曹本福,姜海霞,陆引罡,2,3*,刘 丽,3*,王茂胜
(1.贵州大学农学院,贵州 贵阳 550025;2.贵州省烟草品质研究重点实验室,贵州 贵阳 550025;3.贵州大学新型肥料资源与技术研究所,贵州 贵阳 550025;4.贵州理工学院食品药品制造工程学院,贵州 贵阳 550003)
丛枝菌根(Arbuscular mycorrhizal,AM)真菌作为土壤系统中重要的功能性微生物[1],对农业微生物资源产业的建设与发展至关重要,其可与大多数植物构建共生关系,是现存于自然生态系统中最广泛、最古老的无性真核生物之一[2]。AM真菌隶属球囊菌门(Glomeromycota),下设1纲4目11科27属,Borstler等[3]认为全球范围内AM真菌种类资源至少存在1250种,目前已记录在库的AM真菌300余种,大量的AM真菌种类有待发掘。我国AM真菌147种[4],并且不断有新种发现,表明我国AM真菌菌株资源库容潜力巨大。较其他菌根真菌而言,AM真菌可侵染的植物数量基数占比最大,AM真菌需要从宿主植物体内获取满足自身生长的碳源营养,作为回报,丛枝菌根帮助植物吸收土壤中的矿质养分、缓解重金属元素毒害、协调生理生化代谢以及促进宿主水分利用效率等[5],其中对植物磷营养状况的改善尤为突出[6]。菌根化植物的养分获取得益于其强大的地下菌丝网络,对整个生态系统植物间的养分流动和碳氮平衡具有重要作用[7-10]。
烟草(Nicotiana tabacumL.)是目前我国栽种最为广泛的烟草类型,主要分布于我国西北、西南和华东地区,以西南地区的云、贵两省烟草种植面积及产量最大。烟草作为一种重要的经济作物,全株可作农用杀虫剂,药用麻醉、镇定及催眠剂[11],最普遍的作为烟草卷烟工业原料,表现出较高的经济应用价值。烟草是被研究较多的模式作物之一,目前,关于AM真菌作为接菌剂,探讨其在烟草作物育苗繁殖、生长发育、养分吸收、抗胁迫能力以及抗病虫害能力等方面展开了较多的研究。本文以烟草作物为例,着重从烟草根系土壤中AM真菌的多样性、AM真菌定殖烟草根系的主要因素以及AM共生体在养分吸收、生理代谢、抗逆性和烟草品质等方面的影响进行了综述,旨在为今后菌根技术广泛应用于烟草生产提供参考。
1 烟草根际土壤中AM真菌的物种多样性
Hayman等[12]于20世纪80年代首次涉及烟草根系的AM真菌多样性研究,发现New South Wales烟区中的优势种为Acaulospora laevis和Gloums mosseae。参考现有AM真菌最新分类系统体系及相关书籍的详细分类列表[3-4],对目前公布的烟草根系土壤中分离鉴定的AM真菌进行统计(表1),汇总发现烟草根系土壤中的AM真菌具有丰富的物种多样性,包含13属54种。从表1可看出,不同烟草种植区根际土壤中AM真菌的群落组成和优势种皆存在较大差异,其中隶属于Acaulospora(16种)的种最为丰富,其次为Glomus(12种)和Rhizophagus(6种)。但属、种间并未表现出一致性,各种中分别以摩西斗管囊霉(F.mosseae)、根内根孢囊霉(R.intraradices)、幼套近明球囊霉(Cl.etunicatum)、近明球囊霉(Cl.claroideum)和光壁无梗囊霉(A.laevis)为优势种。同时显示F.mosseae是分布最为广泛的种,其分布区域囊括了我国多个省份种植区;此外,部分种存在于特定的烟草种植地区,呈现出明显的AM真菌分布地域特性[13-14]。目前,关于烟草根际AM真菌多样性分布的研究较少,手段落后且工作目的主要集中于单一的种质资源调查。
进行AM真菌的资源调查和分类鉴定工作是开展其他与之相关研究的重要基础。过去针对AM真菌多样性的研究大多基于蔗糖离心-湿筛斜析法与光学显微镜人为地进行孢子形态对比鉴定,其鉴定效率与准确度较低,且在鉴定过程中易造成疏漏[15-17]。近年来,分子生物学技术特别是高通量测序平台的广泛应用积极推动了AM真菌的地理生态学研究进程[18],且研究不断完善AM真菌基因序列(18S rRNA、ITS、β-tubulin基因)的测序方法[19-20],使得AM真菌的鉴定分类手段日趋成熟。采用分子生物学技术进行烟草根系相关研究,揭示不同植烟区域的AM真菌空间分布特征及其多样性,明确其主要影响因子,对AM真菌的生产应用和地理生态学具有重要意义,这仍需要烟草从事者及相关研究人员的共同努力。
表1 烟草根系土壤中分离的AM真菌分布区域
续表
续表
2 影响AM真菌侵染定殖烟草根系的主要因素
菌根侵染定殖状况是反映其共生效应强弱的基本表征。一般而言,AM真菌侵染定殖烟草根系受到烟草品种、AM真菌种类、气候因子、土壤因子、农业管理及宿主植物激素水平等多种因素影响。
2.1 烟草品种和AM真菌种类对菌根定殖的影响
烟草品种与AM真菌种类是影响AM与烟草植株共生效果的重要因素之一。Janouškovú等[26]研究不同AM真菌菌株对Basma BEK、K326和TN90烟草品种的影响,结果显示AM真菌更偏向于侵染Basma BEK和TN90,以G.intraradices的侵染率整体高于其他种。周霞等[27]采用漂浮育苗法接种G.intraradices、G.etunicatumBEG-168及G.etunicatumBGC-HEB07A,发现其侵染率因不同菌株而异,也与干旱程度有关。Hua等[28]评估了Acaulospora与Glomus共5株菌种与云烟85的共生强度,发现不同属之间的定殖率不同,不同种之间也存在显著差异,以A.mellea定殖效果最佳。对云南烟区主栽的云烟202、云烟87、云烟85及MS-K326烟草品种进行群落结构差异分析发现,侵染4个烟草品种根系的主要AM真菌类型相同,但稀有AM真菌类型明显不同[24];该结果与全球尺度上的研究结论趋于一致,即不同地区AM真菌组成相似性较大,同时存在其菌根特有性[14]。此外,同一AM菌种对野生型烟草与转基因品种之间[29]、不同菌种对转基因品种之间[30-32]的侵染共生效果也存在较大差异,往往转基因型烟草菌根化的促生效益更佳,这为基因组技术与菌根技术应用于作物育种提供了可能。
不同烟草品种、AM真菌种类的菌根定殖率不同,同一AM真菌种的不同菌株侵染效果也存在差异。如G.intraradicesPH5和G.intraradicesBEG75对不同烟草品种的定殖状况差异均较大,其中在Basma BEK和TN90品种中以BEG75侵染率显著大于PH5,在K326中则反之[26]。烟草接种R.irregularisRI和R.irregularisFM及二者混合物,结果显示各处理的菌丝和丛枝定殖率存在明显差异,且混合处理的菌丝和丛枝发育整体低于单一菌剂处理[32]。也有研究表明,复合菌剂接种其定殖率显著提高[33],关于复合菌剂的施用效果仍需进一步研究。不同烟草品种对于AM真菌具有特异招募性,不同AM真菌对烟草根系的依赖程度也存在一定差异,AM真菌与植物之间的相互选择和合理匹配,是影响共生体系的关键[34]。
2.2 地理因素对AM真菌定殖侵染的影响
地理因子主要包括地理经纬度、海拔。纬度可通过表型可塑性、环境过滤和生态进化适应选择对植物菌根产生影响,这一过程受制于太阳的光照辐射,低纬度环境中植物与AM真菌表现出更好的表型可塑性;随着纬度梯度升高,AM真菌与植物共生关系消弱,由丛枝菌根向外生菌根(ECM)或欧石楠类菌根(ERM)型植物转变[35],这意味着AM菌根种类可能会随着纬度的升高而大幅度减少。植烟土壤受人类长期的农业生产活动和自然环境因素影响,其土地使用强度和海拔等有所不同,AM真菌的定殖效果差异较大[36],这也是前文(表1)显示我国不同植烟区AM真菌分布不一致的主要原因之一。我国拥有西南烟区、东南烟区、长江中上游烟区等5大烟草种植区域,且各植烟区海拔、气候、地貌亦存在较大差异[37]。探究不同植烟空间尺度上AM真菌定殖状况、丰富度和多度,将有利于烟草菌根技术的发展与应用。
2.3 土壤养分和逆境胁迫程度对AM真菌侵染定殖的影响
土壤的养分水平是影响微生物生长繁殖的重要因子。对菌根化植物而言,土壤养分含量是影响植物发育的关键诱因,同时可在一定程度上影响AM真菌的多样性、孢子频度、菌丝密度以及共生效益等[38]。一般而言,随着土壤养分含量的增加,AM真菌与植物的共生更为牢固,当养分浓度超过一定程度后其依赖性反而下降[39]。作为专性活体内生真菌,AM真菌在适宜条件下方能与植物形成良好的共生体系,这很大程度上取决于植物所提供的碳(C)数量。宿主植物会根据土壤的供肥能力调节AM真菌对自身的依赖程度,土壤肥力较高时,侵染率低,反之,侵染率相对较高。适宜丛枝菌根发育的土壤条件中,AM真菌类群可产生大量的外生菌丝为宿主获取N、P养分提供便利,积极改善烟株生长发育[40],但共生关系得到提升的同时,可能会对宿主造成更大的C损失[41]。此外,有研究显示,当烟株累积过多的C时,通过韧皮部卸荷减少根系同化物供应,不利于AM真菌的侵染[42],这意味着植物适应土壤环境的倾向选择策略是影响菌根侵染及发育的重要因素。
在一定条件下,随着环境胁迫程度的提高,植物对AM真菌的依赖程度随之增加。在低磷(P)限制与高盐胁迫下,AM真菌的早期定殖共生使得烟株氧化磷酸化加强,三磷酸腺苷(ATP)消耗严重,但在侵染一段时间后植株表现出更快的生长速率[43]。硝酸盐的供应水平显著影响着AM真菌对烟草根系的定殖[44],当硝酸盐供应不足时,AM真菌的定殖降低根系呼吸速率,减少柠檬酸和苹果酸的分泌,缓解胁迫效应,维持植株正常生长[45]。菌根共生体系的主要驱动因素被认为是植物光合产物与真菌磷酸盐的交换,对于宿主而言,AM菌根的主要效益无疑是为植物提供更多的P,因此土壤P的有效性是影响AM定殖的重要诱因。研究显示,通过菌根作用换取单位数量的P,植物所消耗的能量约为通过根系本身吸收所耗能量的两倍[46];这在土壤可利用养分过低时可能会增加植物的生长负担。可见,土壤的养分供给能力直接影响着作物的养分吸收策略,从而影响AM真菌的定殖。较高P条件下,植物仅根系吸收的P数量即可满足自身的需求,菌根依赖性降低,P绝对过量时,外生菌丝不劳而获,成为消费者[47]。目前适宜烟草菌根化的具体土壤养分因子及其浓度范围尚不明确,这些工作对后续烟草专用AM真菌菌剂的商业化开发及其适宜的植烟土壤条件具有重要的参考价值。
2.4 管理措施对AM真菌侵染定殖的影响
不合理的农业管理措施如不合理施肥、灌溉方式及过量农药皆会影响AM真菌对宿主根系的定殖,导致丛枝发育缓慢、产孢能力下降和共生效果衰退。提高灌溉浇水量会降低AM真菌的侵染率及其与宿主的共生效果,且灌溉水中所含的养分离子会对烟草产生养分胁迫,多重影响侵染定殖效果[48];适度干旱可诱导AM真菌对烟草根系葡萄糖积累,有利于提高根系抗旱应激能力[49]。AM真菌依赖于无机养分,AM真菌共生的植物倾向于主导快速的养分吸收策略[50],施用化肥可在短期内增加土壤中养分有效性,有助于其发挥促生效果,对于自身养分或施肥效应达丰富或极丰富水平的土壤,不利于接种AM真菌,研究显示,适当减量化施肥其侵染强度增加,共生效益提高[51],使用缓释肥有利于提高AM真菌的共生效果[52]。
2.5 植物激素对AM真菌侵染定殖的影响
作为重要的信号分子,植物激素已被证实对丛枝菌根形成过程具有诱导作用,包括独角金内酯、生长素、水杨酸、油菜素内酯以及细胞分裂素等。早期的研究表明,独脚金内酯(SL)是影响AM真菌侵染植物根系的主要信号分子,AM真菌孢子的萌发和菌丝生长受寄主根释放的SL所诱导,使菌丝朝向根系生长,当AM菌丝侵入根系表皮细胞,会再次诱导丛枝生长,分支度高的丛枝形成共生界面为养分交换提供场所[53]。植物细胞分裂素(CK)的分泌水平影响着AM真菌菌丝的生长[31]。Cosme等[32]研究指出茎部CK对AM真菌在根中的发育及根转录水平具有积极作用,而根部的CK限制碳输出、抑制AM真菌的定殖,可见不同部位的CK在AM共生中具有不同作用。AM真菌的根定殖也受水杨酸(SA)含量的诱导。María等[54]研究发现,通过转基因途径抑制或增加烟草内源活性SA的分泌,菌根定殖率相应提高或降低,说明烟草内源SA可延迟AM真菌的根系定殖与共生结构的形成。Tan等[55]将异黄酮基因导入烟草诱导异黄酮合成并外源性加入不同浓度的异黄酮,发现AM真菌的定殖皆受内源性和外源性异黄酮的影响,二者组合可显著促进AM真菌共生的形成。此外,碱性几丁质酶和碱性β-1,3-葡聚糖酶也被证实影响AM真菌的定殖[29]。
3 AM真菌与烟草共生的生理效应及作用机制
AM真菌可通过促进植物对水分、矿物质及多种养分的吸收,改善烟株生长,其强大的地下菌丝网络可加强宿主间信号交流及缓解胁迫环境的耐受性[56]。
3.1 AM真菌在烟草育苗抗病、抗旱中的应用与效果
烟草无害化壮苗的培育是保证其田间产量获得的基础。漂浮育苗已成为目前我国烟草育苗的主要方式,实际应用过程中,漂浮育苗技术体系仍存在一些问题,如烟苗抗旱、抗病性不佳等。研究显示,将AM真菌运用于烟草育苗可有效解决上述问题。在干旱胁迫下,菌根化烟苗的碳分配显著向可溶性糖积累,以缓解胁迫带来的损伤[49]。接种G.intraradices、G.etunicatum可降低干旱导致的膜脂氧化损伤,烟苗生物量、营养状况、丙二醛、叶绿素和根系活力等得到显著提高[27]。也有研究指出,AM真菌单一施用更适合实际生产,且其抗旱效果受菌株类型影响较大[57]。Subhashini等[58]研究指出在接种AM真菌的烟草幼苗中,较杀菌剂对照处理相比,植株生长苗高、鲜重、干重及叶面积等显著增加,菌根苗叶片胡萝卜素含量及营养元素N、P、K、Zn、Cu、Fe、Mn含量均高于非菌根苗,其中以土著分离株(G.spp)定殖率、促生及防治效果最佳。
上述研究表明,AM真菌对烟草的促生效果显著,在提高烟苗的抗旱、抗病、养分累积、环境适应力方面具有较好的应用空间。但并非所有的AM真菌菌株都具有相同的效果,其中烟草品种是决定其共生效果的重要因素之一,植株与AM真菌菌株或大多数AM真菌类型的亲和性较高,则表现出良好的共生效益。接种效果也取决于AM真菌的种类,同一菌株的不同生态小种或地缘小种之间都可能在功能上表现出较大差异[59]。烟草与AM真菌互相之间存在一定的选择性和偏好性,这也是土著AM真菌促生效果优于外源AM菌株的原因之一[60-61]。应认识到,接种效果的优劣并不是绝对的,环境因子也会影响其共生效果,因此,在实际应用过程中应将多环境因子及因子间的综合作用纳入研究范畴。
3.2 AM真菌对烟草生长的影响
AM真菌可与烟草形成良好的共生关系,这已在盆栽试验中得到证实。在丛枝菌根共生体的建立过程中,真菌菌丝侵入烟草根表皮细胞,烟草根表皮细胞经历一系列的重编程事件,为引导菌丝形成‘丛枝’提供准备[62-63],包括液泡破碎、细胞核运动、微管变向以及内质网重组等[64-66],甚至涉及胞吐过程和细胞骨架的重排[67],从而改变植株根系形状及养分吸收策略[68]。随后,真菌菌丝在根皮层细胞间生长,侵染一段时间后形成高度分化的丛枝结构,无数分支度高的丛枝可为养分交换提供共生交换界面,磷和氮等矿质营养物质通过共生界面从AM真菌运输到根系内,养分经过长距离运输等方式到达地上部[69-70],对烟草植株的生长发育至关重要。研究表明,接种AM真菌可显著提高烟草根系的根体积、根面积、总根长及根系活力[57,71],改善根系形态结构和烟株营养状况[26,40,55];同时可有效缓解胁迫损伤,增加生物量累积[72-73],其叶绿素含量和根系活力指数均显著高于不接种处理[27]。此外,接种G.mosseae可显著增加烟草叶片光合特征、PSII原初光能转换效率、最大相对电子传递速率及半饱和光强等[74]。
丛枝菌根对植物养分吸收的促进作用可分为直接和间接两种方式。间接作用指AM真菌间接通过菌丝内部的原生质环流快速地将养分离子转运到寄主植物根内的作用[75];直接作用则指由丛枝菌根协助根系直接吸收土壤难溶养分或直接改变寄主植物的根系觅食策略,从而影响宿主生长发育的作用[76]。AM真菌侵染宿主植物的根系后,一方面向根内发展形成丛枝结构,另一方面向根外介质广泛延伸,形成致密的菌丝网。由于丛枝菌根真菌与宿主植物专一性不强,当根外菌丝接触到其它寄主植物时可再度侵染,从而形成根系之间的菌丝桥联系。研究发现,同种植物、不同种植物间均可形成地下菌丝网络[8,50],且远亲植物之间通过菌根共生的植物促进作用更强[77],在养分循环与资源高效利用方面扮演重要角色。郭涛等[78]采用分室法接种病原菌于供体植物,结果显示受体烟株叶片内的过氧化物酶、多酚氧化酶、苯丙氨酸解氨酶活性等显著提高,而在不接种AM真菌条件下,上述现象均无明显变化。
3.3 AM真菌对烟草抗(耐)重金属胁迫的影响
烟草是一种高生物量植物,具有较大的重金属累积潜力[79],这意味着烟草植株可累积较多的重金属物质,对烟草生产的质量安全极为不利[80]。许多研究表明,AM真菌能够提高烟草对各类重金属胁迫的耐(抗)性,缓解重金属污染对烟草所带来的负面影响。Janousková等[81]发现菌根化的植物中Cd含量低于非菌根植物,外生菌丝(EHC)每单位生物量积累的Cd是烟草根系的10~20倍;进一步研究显示,根系底物中的低Cd含量与EHC诱导的碱化有关,但与EHC密度没有表现出明显的直接关系[82],尽管如此,研究证实了AM共生可有效抑制高Cd污染土壤带来的不利影响,以维护其植物生长稳定性。AM共生可降低酸性土壤中烟株叶片的Cd含量,但增加了低Cd的有效性如土壤中Cd的有效性,表明AM共生可通过促进根系生长或菌根植物介导的化学或生物土壤性质的变化间接影响烟草对Cd的吸收[26]。此外,有研究显示接种AM真菌配施适量化肥可有效降低植株的Cd含量[52,73],且配施有机肥其阻控效果更佳[83]。在接种AM真菌处理的污染植烟土壤中,其烟草根际土壤pH、水溶态As含量以及植株As吸收量均低于不接种处理,分析表明菌根对植物吸收As的保护作用可能与土壤pH值变化介导的As溶解度变化有关[28]。Audet等[84]发现在Zn污染土壤中,AM真菌的定殖率随Zn含量的增加而显著增加,在Zn含量最高的土壤中其菌根结构最为丰富,同时AM植物(尤其是根系)的Zn含量和单位浓度均低于非AM植物。
3.4 AM真菌对烟草品质的影响
接种AM真菌在促进宿主矿质元素吸收的同时,可对烟草产量和质量的形成产生较大影响。王茂胜等[85]研究表明,烟草菌根化有利于烟株叶面伸展,烤烟产量、中上等烟比例、均价、产值分别提高24.03%、9.62%、34%、66.19%。Subhashini[86]研究显示接种AM真菌烟叶生物量累积显著提高,烟叶烟碱、还原糖、氯素的品质参数得到进一步改善。接种G.intraradices或G.mosseae配施生物炭,可促进根系发育和叶片光合进程,显著改善烤烟叶片糖分、烟碱、氯元素及其比值协调性,提高烟叶品质[71]。赵方贵等[87]研究显示,接种AM真菌能够增加烟叶腺毛密度,提高香气相关物质的表征含量,同时促进香气物质合成途径中关键酶活性及酶基因的表达上调,说明接种AM真菌可增加烟叶腺毛的分泌活性,并促进烟草叶片香气物质的生物合成过程。Sara等[88]研究发现,AM真菌(G.etunicatum)破碎孢子(DS)及萌发孢子滤液(GS)均可诱导烟株生物碱合成的相关基因表达量,提高烟草甘碱、烟碱及去甲烟碱的含量;此外,外源接种AM真菌菌剂可改变生物碱生物合成途径的基因表达谱,烟株叶部与根部中的烟碱、新烟碱、去甲烟碱亦较高[89]。有研究显示,在遭受烟粉虱取食胁迫时,AM真菌可介导烟株次生代谢致使叶表化学物质产生变化,从而吸引黄蜂(烟粉虱天敌)的捕食[90]。
3.5 AM真菌与PGPR对烟草的促生效应影响
植物根际促生菌(PGPR)是一类生活在土壤中或依附于植物根系的有益微生物,对植物生长具有积极作用。报道显示,AM真菌与PGPR存在协同增效作用[91]。Cosme等[31]研究表明,荧光假单胞菌(Pseudomonas fluorescens)与AM真菌的互作效应依赖于土壤养分状况和宿主根系的激素分泌水平,可协同改变根形态以增加烟株对磷素的吸收及调节植株激素的生理代谢,从而达到提高地上部生长的目的。接种AM真菌或解钾菌(potassium-mobilizing bacterium,KMB)均不能显著提高土壤P、K的有效性,二者联合配施,持续提高了土壤中P和K的有效性,改善了烟叶品质参数,增强了植株的生长与活力[86],体现出AM真菌和KMB作为生物肥料在烟草可持续生产中具有一定的应用潜力。哈茨木霉菌(Trichoderma harzianum strain)复合有机肥(BOF)和G.mosseae(Gm)单独施用其病虫害防治效果均不理想,二者结合施用其病虫害发生率最低,显著提高了系统抗性的相关酶活性,防治效果可达68.2%,且BOF可促进Gm的定殖[92]。Subhashin[93]研究指出,根际细菌可进一步提高菌根化烟株的生长、产量及叶片质量,协助AM真菌发挥促生功能,G.intraradices、Psuedomonas flarescens及Azotobacter chroococum三者联合接种可相互显著提高其余两者的根部定殖,其烟株生物量、气体交换参数、叶片养分含量、产量、等级指数及品质最佳。
4 存在问题与展望
大多数陆地植物的根系皆能形成AM共生体,对提高植物养分吸收、促进生长发育、缓解环境胁迫、改善土壤特性及减少温室气体排放等方面具有积极作用。AM真菌能与烟草根系形成良好的共生关系,在烟草的田间生产中,减肥增效、优质适产、生态型植烟体系构建等是烟叶生产的热门话题,运用菌根技术以解决栽培种植的问题,为烟草产业的发展提供了机遇。然而,定殖并不总是有利于植物生长增加,几项研究显示外源AM的定殖产生了零或负生长效应[27,94-95],表明AM定殖和宿主生长反应之间存在一定的权衡[96]。烟草是被研究较多的模式作物之一,现有的盆栽试验中接种 菌 多 以R.irregularis、F.mosseae、R.intraradices、Cl.etunicatum单一接种或两者结合使用为主;如前文所述,烟草根围至少存在AM真菌54种,绝大部分菌株的室内效果尚不得知。土壤环境是一个极其复杂的多生物共存体系,土壤中的AM真菌并非以单一或少数几种AM存在,这意味着现报道的接种菌是否是最佳的菌种又或其田间效果也如室内试验效果仍需要进一步研究。应认识到,了解AM真菌的功能多样性是决定其能够在未来的资源开发中扮演角色的重要依据。AM真菌的分布具有一定的地域特性,同一区域的不同菌株或不同区域的同一类型菌株均可能在功能上表现出较大差异;因此,探明烟草根围的AM真菌多样性,建立烟草AM真菌资源库,对AM真菌在抗逆性、促生效果等有效性进行评价,从而达到筛选高效菌株的目的,是当下亟需开展的重要研究工作。
共生的主要驱动因素通常被认为是植物光合碳产物与真菌磷酸盐的交换。最新的研究表明,脂肪酸是从宿主植物转移到AM真菌的主要碳源形式[5,97];有趣的是,许多植物病原真菌会诱导植物合成脂肪酸,通过与植物争夺碳源从而导致作物减产。这一发现启示我们,揭示丛枝菌根抑制病原真菌获得碳源进而抑制病原真菌生长的机制,积极探索AM真菌与病原菌的竞争机理,将是未来菌根技术防治病害的重要发展方向。改善宿主植物对养分的摄取能力,是丛枝菌根主要的促生功能之一,当下还需要解决的突出问题是,探索不同生境下宿主植物与AM真菌之间物质交换的调节机理,明确AM共生中的复杂运输机制,这些知识对烟草的田间生产乃至整个农业生产及环境生态系统有着重要作用。此外,今后的工作重点仍需放在了解植物宿主发育与植物激素信号、环境调节因子之间的耦合机制;积极采用基因组技术与菌根技术结合,将有助于未来的作物育种策略,有望促进作物生长、养分获取、质量安全及产量指数,以实现效益最大化。基于此,也将希望寄于相关领域的菌根学研究者以及农艺专家的共同努力,为推动农业产业的发展及菌根技术的进程作出积极贡献。