海上升压站正压送风系统计算及控制研究
2021-03-29杨锋斌张先提王春磊孙文龙
杨锋斌,张先提,王春磊,孙文龙
(中国能源建设集团广东省电力设计研究院有限公司,广州510663)
中国海上风能资源丰富,随着海上风电关键技术取得突破和产业服务体系的不断完善,最近几年江苏、福建、广东海上风电开发建设进度明显加快。目前全国已并网海上风电装机容量仅次于英国和德国,位居全球第三位[1]。
与陆地风电相比,海上风电所处的高湿度、高盐雾、长日照等恶劣的海洋环境,必然使海上升压站面临严峻的腐蚀考验,腐蚀问题成为海上风电遇到的技术难题之一[2]。研究[3-7]表明高盐高湿的海洋大气环境,极易在金属表面形成微电池和宏电池,增加腐蚀的活性,破坏金属表面的钝化膜,材料的腐蚀和性能下降速率远比在陆上大气环境中快。同时海上升压站上存在大量以钢铁为主的金属构件,如主变的油箱外壳、散热片、开关柜、控制保护柜的外壳等,盐雾沉积在电气设备表面,在电磁场作用下,沉积物被电离形成导电薄膜,降低了电气设备的绝缘水平,因此,电气设备的故障率会大大增加。近年来,我国对海洋环境防腐蚀研究越来越重视,各种防腐蚀技术也发展迅速,但仍然不能满足海上风电的发展需求[8]。
为解决上述问题,首先应避免电气设备直接暴露在海洋大气中,维持设备所处环境相对封闭。并且,为防止室外空气对电气设备的盐雾腐蚀,房间需保持正压,设置正压送风系统。
目前我国对于海上升压站的正压送风系统缺乏深入细致的研究。海上升压站正压送风系统存在计算方法不够准确、正压系统控制不够精确等问题。为解决这些问题,本文结合南海多个海上升压站项目正压送风系统实例,对正压送风量计算和正压控制系统进行分析探讨,确定了正压送风量计算原则及控制策略。
1 正压送风量的确定
为满足室内正压设计值,需通过计算选取合适的送风量。
已知室外风速,采用下式计算室内外压差[9-10]。
式中:ΔPf为室内外风压差(Pa);K为风压差系数,取1.19[11];vw为室外平均风速,取7~8 m/s[12];ρw—为计算温度下的室外空气密度,1.2 kg/m3。
按照上式计算可知室外风压为35~40 Pa,且室内正压值需要高于室外风压10 Pa 以上[13],才能保证室外高盐高湿空气不能进入室内,故室内正压值取45~50 Pa。
目前计算维持室内正压所需风量常用的方法有缝隙法、换气次数法。下面就分别采用两种方法进行计算分析。
1.1 缝隙法
采用缝隙法计算风量,既考虑了房间维护结构的气密性,又考虑了室内维持一定的正压值。门关闭时,保持一定压差所需的风量按下式计算[14]:
式中:Ly为按压差法计算的加压风量(m3/h);A为门缝的缝隙面积(m2);ΔP为加压区与非加压区的压差(Pa);b为指数,对于门缝取2;0.827为计算常数;1.25为不严密处附加系数。
门缝的缝隙面积按“缝长×缝宽”进行计算。而缝宽在系统设计时是一个不确定值,它与门的形式、加工质量、安装质量、使用情况等因素有关。本次计算缝宽按照某项目实际安装要求取值为2 mm。某海上升压站各房间门窗缝隙统计如表1 所示。按照缝隙法计算房间正压送风量结果如表2所示。
表1 各房间外门统计Tab.1 Statistics of external doors of each room
表2 缝隙法计算风量Tab.2 Calculation of air volume by gap method
1.2 换气次数法
换气次数是衡量空间稀释情况好坏的重要参数,也是估算空间通风量的依据。对于确定压差的房间,换气次数按照实用供热空调设计手册[15]确定。按换气次数法计算房间正压送风量结果如表3所示。
表3 换气次数法计算风量Tab.3 Calculation of air volume by air change times method
1.3 结果对比分析
两种方法计算结果对比如图1 所示。从中计算可以看出:(1)换气次数法所计算风量均大于缝隙法所计算风量;(2)不同房间按换气次数法所计算的风量波动剧烈;(3)不同房间按缝隙法所计算的风量波动较为平稳。
由于一般海上升压站舱壁与各层甲板之间采用金属板焊接,无缝隙,且各房间外门开启方向均朝向室外,各房间无开窗,可知各房间正压送风量仅与外门缝隙长度有关,与房间体积无关,所以缝隙法计算结果较为平缓,而换气次数法计算结果波动剧烈。
图1 两种方法计算结果对比Fig.1 Comparison of calculation results of two methods
正压室内空气通过外门缝隙逸出,所以按照缝隙法计算可以真实地反映室内正压所需送风量。而换气次数取值依据陆上经验,并不完全适用于海上升压站,所以造成计算风量偏大。
通过缝隙法计算风量反推换气次数如表4所示。
表4 缝隙法计算风量反推换气次数Tab.4 Calculate the number of air change times after air volume calculation by the gap method
表3 通过缝隙法计算风量反推得到实际的换气次数,进一步验证根据陆上经验得出的使建筑物保持一定正压值的换气次数不适用于海上升压站。需要指出的是,当全部或者部分外门开启方向朝内走道时,正压送风量将进一步减小。
2 正压送风系统的控制
2.1 余压阀控制
正压送风系统目前较常用的余压控制方法是余压阀泄压。
余压阀泄压是在正压房间外墙设置余压阀,当室内压力过高时,利用余压阀可开启的阀板泄掉超压风量。该系统布置简单,初投资较小。缺点是控制精确度低,正压所需送风量大,系统能耗较高。
安装余压阀,必须保证房间内有足够的过剩风量,即需保证送风量大于门缝漏风量,因此,防止室内超压,余压阀的选型至关重要。
房间通风方式采用机械送风、自然排风方式,根据文献[12],风量平衡如下式计算:
式中:Ls为房间送风量(m3/h);Lm为为门缝漏风量,按照公式(2)计算,(m3/h);Lx为泄压风量,(m3/h)。
余压阀泄压面积F按下式计算:
在正压送风系统中,余压阀的面积需要精确计算得出,选型过大,就会造成浪费;选型过小,就会存在超压风险。
2.2 变风量末端余压控制
作者根据多个海上升压站工程设计实践提出一种海上升压站正压送风系统及其控制系统,详细架构如图2 所示。该系统主体包括变频新风机组、风管系统、末端变风量调节装置、末端送风设备。所述控制系统由室内外压差传感器(1)、末端支管压差传感器(2)、末端变风量调节装置(3)、变频新风机组(4)、DDC 控制器(5)等设备组成。控制系统通过对室内外压差传感器、末端支管压差传感器的数据分析,控制变频新风机组、末端变风量调节装置,使得室内正压维持正常水平。
图2 海上升压站正压送风系统及其控制系统架构Fig.2 Positive pressure air supply system and control system architecture of offshore booster station
室外高盐雾、高湿、高温空气经变频新风机组过滤、除盐雾、降温除湿后,由风管系统、末端送风设备送入房间内,维持房间内部微正压,避免室外高盐雾、高湿空气侵入室内,同时改善室内空气品质。
室内外压差传感器实时监测室内外大气压力,并与压差设定值比较,当室内外压差超过设定值时,报警并反馈信号给变风量控制末端和新风机组控制系统,变风量控制末端接收信号后控制末端变风量调节阀门减小开度,新风机组控制系统接收信号后控制变频风机转速,减小送入房间空气量,维持室内正压正常水平。反之,当室内外压差小于设定值时,通过调节风机转速和末端变风量调节阀门开度加大送入风量。
该控制系统侧重于房间正压精确可调。与余压阀控制“先超压后泄压”的方法相比,提倡“调风量保压差”,这样不仅严格控制正压所需风量,降低空调系统能耗,而且大大降低房间超压发生的可能,防患于未然。同时本系统压差控制可通过直接读取室内外压差并反馈DDC 控制器,实现对房间送入风量的灵活调节,具有系统送风量小、房间送风量变风量可调、输送能耗小、可完全实现自动控制、故障率小等优点。
3 结 论
本文从大量海上升压站通风空调设计实践中,总结提出海上升压站防盐雾正压送风系统计算及其控制方法,为海上升压站通风空调及防盐雾系统设计实践提供有力的支撑。本文主要结论如下:
1)对于海上升压站防盐雾正压送风系统,送风量的计算要综合考虑围护结构气密性、室内正压值和控制方式,不能简单以换气次数为基准计算送风量。
2)采用缝隙法计算海上升压站正压送风量结果较为准确。而根据陆上建筑设计经验推荐的换气次数法计算结果偏大,偏离正压送风系统运行实际,造成不必要的能源浪费。
3)带有末端变风量调节装置的控制系统在精确控制房间正压值的基础上,避免了大风量先超压后泄压的缺点,可有效降低系统能耗和高盐高湿气体对海上升压站工艺设备的腐蚀,提高设备可靠性及运行寿命。