APP下载

茉莉素、生长素和表观遗传调控水稻颖花发育的研究进展

2021-03-28陈睿

福建农业科技 2021年1期
关键词:生长素水稻

陈睿

摘 要:颖花是水稻的繁殖器官和形成籽粒的基础,其正常发育直接影响稻谷产量和稻米品质。因此,研究水稻颖花发育的分子调控机理,对于水稻发育的基础理论研究和农业育种具有重要的意义。近年来的研究结果表明茉莉素、生长素和表观遗传在水稻颖花发育中具有重要的调控作用。综述了茉莉素、生长素和表观遗传在调控水稻颖花的产生和形态建成等方面的最新研究进展,并提出未来研究需要分离更多相关基因以充实水稻颖花发育调控网络,促进其分子机制的解析。

关键词:水稻;颖花;茉莉素;生长素;表观遗传

中图分类号:S 511 文献标志码:A 文章编号:0253-2301(2021)01-0062-06

DOI:10.13651/j.cnki.fjnykj.2021.01.011

Abstract:The floret are the reproductive organs of rice and the basis of grain formation, and their normal development directly affects the yield and quality of rice. Therefore, it is of great significance to study the molecular regulation mechanism of rice floret development for the basic theoretical research of rice development and agricultural breeding. The research results in recent years have shown that jasmonates, auxin and epigenetics have important regulating effect in rice floret development. In this paper, the recent research progress in the regulation of jasmonates, auxin and epigenetics on the production of rice floret and their morphogenesis were reviewed, and it was suggested that more related genes should be isolated in further studies, thus to enrich the regulatory network of rice floret development and promote the analysis of their molecular mechanisms.Key words:Rice; Floret; Jasmonates; Auxin; Epigenetics

水稻Oryza sativa L.是世界重要的粮食作物之一。颖花是水稻花序的基本结构单位[1],由1个颖花轴、2个退化颖片(副护颖)、2个不育外稃(护颖)和1朵小花组成[2-4]。小花从外向内依次为内外稃(内外颖)、浆片、雄蕊和雌蕊;内外稃包被浆片、雄蕊和雌蕊,共同成为水稻成熟谷粒中的谷壳[5-6]。因此,水稻颖花不仅是繁殖器官,而且是形成籽粒的基础,其正常发育直接影响稻谷产量和稻米品质,探明水稻颖花发育的分子调控机理具有重要的理论与实际意义[7-8]。

越来越多的证据表明水稻颖花发育是众多基因参与的复杂而又精细的生物学过程,其与双子叶拟南芥在花器官形态建成过程中既保守又独特[9-12]。水稻颖花具有禾本科特有的器官颖壳,即退化颖片、不育外稃和内外稃。近年来,研究结果表明水稻浆片同源于花瓣,与雄雌蕊构成水稻的内轮花器官;内稃可能与花萼同源;退化颖片、不育外稃和外稃可能是苞叶的同源器官。水稻中已克隆多个与拟南芥功能相似的花同源异型

MADS-box基因,建成了调控水稻颖花属性的ABCDE模型。除了MADS-box家族基因外,研究还发现茉莉素、生长素和表观遗传对水稻颖花发育具有重要的调控作用。本文综述了茉莉素、生长素和表观遗传对水稻颖花调控的最新研究进展,以期为水稻颖花发育的分子机理研究提供科学参考。

1 茉莉素调控水稻的颖花发育

茉莉素指茉莉酸(JA)和茉莉酸甲酯(MeJA)、12氧代植物二烯酸(OPDA)等环戊酮的衍生物[13]。已克隆的茉莉素合成及转导的相关基因EG1[14]、EG2/OsJAZ1[14]、DFO2[15-16]、OsOPR7[16]和OsMYC2[17]在颖花早期发育中发挥着重要的作用。

EG1属于磷脂酶A1家族Ⅰ类,同源于拟南芥DAD1和DGL基因,是JA生物合成途径在叶绿体内的重要酶;EG2/OsJAZ1是JA信号抑制因子。两基因单突变均导致不育外稃伸长,额外颖片状结构产生;内稃边缘区缺失,主体结构具有5个维管束等外稃特征;浆片向颖片-浆片镶嵌结构轉化;雄雌蕊数目减少。双突变颖花产生更多的额外颖片状结构,花器官丧失特性转化为颖片状或双生花穗状结构。EG1和EG2/OsJAZ1基因单双突颖花的异常表明水稻花分生组织决定性和花器官的特性,首次证实JA在水稻颖花发育的重要作用。JA通过OsCO1b介导的蛋白酶体途径促进OsJAZ1降解。OsJAZ1与OsMYC2相互作用并抑制OsMYC2,触发OsMADS1的转录活性,从而直接调控OsMADS1的表达。同时突变体中OsMADS1、OsMADS7和OsMADS8表达量均下调,推测JA可能通过激活OsMADS1、OsMADS7和OsMADS8的表达来调控颖花的早期发育[14]。

DFO2编码过氧化物酶体靶向序列1受体蛋白OsPEX5,功能缺失水稻产生异常颖花:不育外稃缺失或伸长,额外颖片、侧生小花以及内外稃异常;浆片转化为颖片状结构;雄蕊数量1~7个或转化成雌雄蕊嵌合体,雌蕊多个柱头或心皮。DFO2/OsPEX5负责过氧化物酶体蛋白OsOPR7的定位。OsOPR7编码12氧植物二烯酸还原酶,在JA生物合成中负责催化OPDA生成OPC8:0[15];基因敲除突变体表现出开放颖壳的异常颖花,花序内源JA和JAIle水平均显著下降,外源施加外源MeJA挽救部分颖花表型,证实OsPEX5通过调节OsOPR7的过氧化物酶体输入从而调控JA生物合成,进而影响颖花发育[16]。

碱性螺旋环螺旋转录因子OsMYC2是早期JA信号的正调控因子[17]。Osmyc2突变体表现出比dfo2更严重的颖花异常表型,同时dfo2中OsMYC2表达下调,这些再次证实JA在调节水稻颖花发育中的关键作用。但OsPEX5和OsOPR7基因在Osmyc2和野生型植株内的表达水平没有差异,说明OsPEX5、OsOPR7和OsMYC2之间不存在反馈调节。OsMYC2与OsJAZ1、OsJAZ3和OsJAZ6相互作用,可能是以上3个基因的共同直接靶标;OsMADS1、OsMADS7和OsMADS14是OsMYC2的直接下游靶基因。

2 生长素调控水稻颖花发育

随着生长素(IAA)合成、信号传递和极性运输相关基因OsARF1[18]、OsARF18[19]、OsARF19[20]、TDD1[21]和OsPID[22-25]功能的解析证实生长素在调控水稻颖花花生分组织及花器官属性过程中起关键作用[10,13]。

生长素反应由一类称为生长素反应因子(Auxin response factors,ARFs)的转录因子介导,在缺乏生长素的情况下,这些转录因子会被Aux/IAA蛋白质抑制[26]。水稻中有25个生长素反应因子,其中OsARF1主要表达于幼穗和愈伤组织。抑制OsARF1表达导致转基因植株生长矮小,无花、开花延迟或不育等生殖发育缺陷[18]。OsARF18是OsmiR160的靶基因。mOsARF18植株中OsARF18基因产生OsmiR160抗性,表达明显上调;植株矮化,分蘖较少,叶子短且卷曲,内外稃突变无法封闭保护内轮花器官,雄蕊异常衰老且结实率降低。OsmiR160解除对OsARF18的调控使生长素合成、信号传导和极性运输的相关基因,以及体内OsmiR160主要来源的OsMIR160a、OsMIR160b基因表达下调,表明该突变表型是由于OsmiR160以负反馈环路方式微调生长素信号途径遭破坏,从而造成水稻生长发育异常[19]。

TDNA插入阻断OsARF19基因转录导致水稻颖花产生3种异常类型且育性降低:内稃同侧增生1个外稃状器官,弯曲顶部的增大状内稃导致开颖,从轻微退化到完全丧失的退化内稃。RNAi突变体表现出与T-DNA插入相似表型,证实OsARF19下调或缺失表达造成花器官的异常发育。OsARF19优势表达于叶片、叶片接合部、基部节间、幼穗、雄蕊和根。osarf19突变体中参与生长素合成的基因上调,参与生长素失活基因下调,而异常花器官中OsMDAS22、OsMDAS29表达显著上调,OsMADS3、CFO1/OsMDAS32表达轻微上调。上调的MADS-box基因启动子均含有生长素应答元件(AuxREs,TGTCTC),暗示基因功能可能受到ARF的影响[20]。鉴于OsMADS22和OsMADS29的异位表达同样呈现osarf19相似的内稃紊乱表型,表明花器官的异常可能是由于不规则的局部生长素浓度及其反应引起的[20,27-28]。

色氨酸生物合成途径是植物IAA生物合成的关键步骤之一。TDD1编码OASB1基因,是色氨酸生物合成的限速酶。tdd1突变体在色氨酸生物合成中存在部分缺陷,胚胎致死,其上皮细胞的胚性愈伤组织能够再生整个植株。再生植株矮化,叶片和花器官形态异常。畸形的内外稃之间形成了一个不正常的间隙,浆片位置偶尔出现外稃状器官,雄蕊数目0~7个,浆片与雄蕊、雄蕊与雌蕊均可形成融合状器官,育性极低。通过过表达Trp依赖的IAA合成途径的关键酶OsYUCCA1提高生长素的内源性水平部分挽救tdd1表型,证实生长素调控水稻花器官发育[21]。

OsPID是生长素极性运输基因。该基因过表达雌蕊柱头数增加,雄蕊数降低;缺失则造成内外稃、浆片异常发育,雌蕊柱头和花柱发生不同程度退化,毛刷状结构稀疏,雄蕊数目增加,结实率下降或不育[22-25]。最新研究首次提出OsPID调控水稻花器官的形成和发育的分子机制[25]:通过磷酸化OsPIN1a和OsPIN1b调控生长素的运输,改变生长素的极性分布,同时与OsMADS16、LAX1等转录因子相互作用调控水稻花器官的形成和发育;另外,OsPID与LAX1/LAX2互作,通过控制水稻的分枝和分蘖而影响产量。

颖花异常突变体中生长素相关重要基因表达量下调则从另一层面表明生长素对水稻颖花发育具有重要的调控作用。ASP1编码一个转录共抑制因子,突变导致水稻发育过程中的多效性表型,如不规则的分枝模式、异常的颖花形态、叶序排列紊乱和腋芽休眠解除。asp1中生长素响应因子OsIAA20表达水平显著上调,表明asp1中OsIAA20表达对生长素的响应较野生型高,推测在野生型植株OsIAA20表达受反馈调节的控制,目的是防止生长素的过度反应,但这种调节可能在asp1中被破坏[29]。osmads1突变体的转录组分析显示生长素响应基因如OsARF-GAP、OsETTIN2、OsARF9、OsARF16、OsARF18和生长素极性运输基因OsPIN1等表达水平均产生明显改变,推测在小花发育过程中OsMADS1对生长素信号转导有直接的调节作用[30]。OsMADS29过表达产生异常花序,仅有4朵小花。内稃显著缩小,浆片基本正常,雄蕊无花药,雌蕊失去羽状外观且柱头无毛变形。过表达植株中参与生长素信号传导的OsSAUR10、OsSAUR12基因表达量上调,OsIAA24等相关基因表达下调,表明生长素信号通路被破坏[31]。

3 表观遗传调控水稻颖花发育

表观遗传修饰包括DNA甲基化、组蛋白修饰和非编码RNA调控等,目前研究表明其调控水稻颖花发育[32-34]。JMJ706功能的阐明首次证实表观遗传修饰调控水稻颖花的发育。该基因编码一种异染色质相关的H3K9去甲基化酶,T-DNA插入导致植株颖花部分內稃或外稃缺失,部分增生1个额外内稃;雌雄蕊数目增多;部分颖花生成玻璃状结构或产生畸形种子。Sun等[35-36]发现JMJ706特异性清除水稻中组蛋白H3K9me2和H3K9me3,推测JMJ706可能是花器官发育相关基因OsMADS47和DH1的靶向基因。

PcG是表观遗传抑制因子,形成PRC2介导组蛋白H3K27me3调控水稻颖花的发育。OsVIL2同源于拟南芥VIN3,是PRC2的组成部分。OsVIL2与OsEMF2b互作,在颖花发育的早期起作用,是颖花正常发育所必需的[37-38]。OsEMF2b与OsLFL1启动子区结合,维持OsLFL1的H3K27me3,正调控水稻开花。同时OsEMF2b直接靶向H3K27me3标记的OsMADS4,调控水稻花的形态[32]。OsFIE1与拟南芥中PRC2的核心成分FIE同源,含有WD40结构域。突变体Epi-df植株矮化,分蘖增多,小花呈现一系列缺陷,包括额外内稃或外稃的形成,伸长的浆片,雄雌蕊数目的改变,结实率显著降低;FIE1启动子和5′区域表现出低甲基化,H3K9me2减少,H3K4me3增加;数百个基因的H3K27me3水平受到干扰,表明DNA甲基化、H3K9me2和H3K27me3之间互相协调,共同调控水稻的颖花发育[39]。

MicroRNAs(miRNAs)是水稻颖花发育的重要调控因子,通过与靶mRNA的互补配对,造成mRNA的降解或翻译抑制[34,39]。水稻miR172家族有4个成员(miR172a-d)。miR172通过靶向AP2基因调控花器官的特性和花分生组织的确定性,特别是外稃/内稃的伸长[40-41]。miR172家族过表达植株均显示严重的花器官异常,内外稃扭曲均无法闭合,内外稃间的连锁结构缺失。同时OsMADS1对miR172具有抑制作用,OsMADS1-miR172-AP2形成调控网络参与花器官的发育[42]。OsmiR396d及其靶基因OsGRFs对于维护内外稃间的连锁是必不可缺的。 OsmiR396d负调控OsGRFs,OsGRFs与其辅激活子OsGIF1相互作用直接激活包括OsJMJ706和OsCR4在内的靶基因的表达,从而影响颖壳的开放和不育外稃长度等[43-45]。

siRNAs介导的DNA甲基化(RdDM)途径在水稻颖花发育过程也扮演重要角色。OsDRM2编码水稻主要的DRM1/2型甲基转移酶基因,定向破坏该基因产生严重生长缺陷和异常DNA甲基化。osdrm 2不抽穗或抽穗延迟,形成小且未成熟圆锥花序,颖花异常,多稃且鲜少开颖,有雌蕊和花药但无花粉,完全不育。进一步研究发现OSDRM2受损细胞缺失RdDM过程的从头甲基化[46]。另一个参与RdDM途径的相关基因OsFDML1,同源于拟南芥IDN 2/RDM 12基因,优势表达于花序和颖花。osfdml 1颖花数量剧减,内稃缺失边缘区域,主体部分转化为外稃状,浆片数目增多、柱头和心皮融合数量增加,分生组织不确定。OsMADS6直接靶向OsFDML1基因,OsFDML1蛋白与近亲同源物OsFDML2形成异源二聚体调控水稻花发育[47]。

4 展望

正常的水稻颖花是后代繁育和稻谷产值的重要保证,因此其调控机制的研究一直备受植物学家和育种工作者的关注。近年来,在退化颖片、不育外稃及内外稃的建成和属性,高阶蛋白复合物、激素和表观遗传调控等方面的研究取得了显著进展,让学者们意识到颖花发育调控的复杂性。随着一系列控制水稻颖花发育基因的克隆,包含MADS-box和非MADS-box基因,有关水稻颖花发育的分子机制已有较为深入的了解,但相比于人们对双子叶植物拟南芥花发育分子机制的研究还显不足,尤其是对内源激素的合成、信号转导以及表观遗传修饰如何调控水稻MADS-box基因,进而控制颖花發育进程仍知之甚少。随着三代测序技术及CRISPR/Cas9介导的定点编辑技术的应用,结合转录组学、代谢组学和蛋白质组学等多组学整合分析,将有助于分离并鉴定更多有关水稻颖花发育突变体及其调控基因,进而全面阐明水稻颖花发育的分子机制。

参考文献:

[1]JUN-ICHI I,KEN-ICHI N,KYOKO I,et al.Rice Plant Development:from Zygote to Spikelet[J].Plant Cell Physiology,2005,46(1):23-47.

[2]KELLOGG E A.Evolutionary History of the Grasses[J].Plant Physiology,2001,125(3):1198-1205.

[3]LOMBARDO F,YOSHIDA H.Interpreting lemma and palea homologies:a point of view from rice floral mutants[J].Frontiers in Plant Science,2015,6(61):61.

[4]TANAKA W,TORIBA T,HIRANO H Y.Flower development in rice[J].Advances in Botanical R- esearch,2014,72(8):221-262.

[5]杨弘远.水稻生殖生物学[M].杭州:浙江大学出版社,2005:19-23.

[6]王忠.水稻的开花与结实[M].北京:科学出版社,2015:13-44.

[7]YOSHIDA H,NAGATO Y.Flower development in rice[J].Journal of Experimental Botany,2011,62(14):4719-4730.

[8]ALI Z,RAZA Q,ATIF R M,et al.Genetic and molecular control of floral organ identity in cereals[J].International Journal of Molecular Sciences,2019,20(11):2743.

[9]SIYI G,BO S,LIANG-SHENG L,et al.Co-ordination of flower development through epigenetic regulation in two model species:rice and arabidopsis[J].Plant Cell Physiol,2015,56(5):830-842.

[10]吴迪,袁政,张大兵.水稻小穗器官发生分子调控机制的研究进展[J].生命科学,2018,30(11):1173-1183.

[11]CINDY C,TUCKER M R,DABING Z,et al.Dissecting the role of MADS-box genes in monocot floral development and diversity[J].Journal of Experimental Botany,2018,69(10):2435-2459.

[12]SHIGE-HIRO S,YUKIKO Y,SUZUHA O,et al.Rice Flower Development Revisited:Regulation of Carpel Specification and Flower Meristem Determinacy[J].Plant and Cell Physiology,2019,60(6):1284-1295.

[13]沈衛平,蔡强,周锋利,等.植物激素调控水稻花器官发育分子机制的研究进展[J].植物生理学报,2015,51(5):593-600.

[14]CAI Q,YUAN Z,CHEN M,et al.Jasmonic acid regulates spikelet development in rice[J].Nature Communications,2014,5:3476.

[15]TANI T,SOBAJIMA H,OKADA K,et al.Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J].Planta,2008,227(3):517-526.

[16]YOU X M,ZHU S S,ZHANG W,et al.OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis[J].The New Phytologist,2019,224(2):712-724.

[17]UJI Y,TANIGUCHI S,DAISUKE TAMAOKI D,et al.Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice[J].Plant and Cell Physiology,2016,57(9):1814-1827.

[18]ATTIA K A,ABDELKHALIK A F,AMMAR M H,et al.Antisense phenotypes reveal a functional expression of OsARF1,an auxin response factor,in transgenic rice[J].Current Issues in Molecular Biology,2009,11(S1):29-34.

[19]HUANG J,LI Z,ZHAO D.Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice[J].Scientific Reports,2016,6(1):29938.

[20]ZHANG S,WU T,LIU S,et al.Disruption of OsARF19 is Critical for Floral Organ Development and Plant Architecture in Rice(Oryza sativa L.)[J].Plant Molecular Biology Reporter,2016,34(4):748-760.

[21]SAZUKA T,KAMIYA N,NISHIMURA T,et al.A rice tryptophan deficient dwarf mutant,tdd1,contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J].The Plant Journal,2010,60(2):227-241.

[22]MORITA Y,KYOZUKA J.Characterization of OsPID,the Rice ortholog of PINOID,and its possible involvement in the control of polar auxin transport[J].Plant Cell Physiology,2007,48(3):540-549.

[23]HE Y,YAN L,GE C,et al.PINOID is required for formation of the stigma and style in rice[J].Plant Physiology,2019,180(2):926-936.

[24]XU M,TANG D,CHENG X,et al.OsPINOID regulates stigma and ovule initiation through maintenance of the floral meristem by auxin signaling[J].Plant Physiology,2019,180(2):952-965.

[25]WU H M,XIE D J,TANG Z S,et al.PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J].Plant Biotechnology Journal,2020,18(8):1778-1795.

[26]GUILFOYLE T J,HAGEN G.Auxin response factors[J].Current Opinion in Plant Biology,2007,10(5):453-460.

[27]SARASWATI N,RITA S,KUMAR T A,et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].Journal of Experimental Botany,2013,64(14):4239-4253.

[28]SENTOKU N,KATO H,KITANO H,et al.OsMADS22,an STMADS11-like MADS-box gene of rice,is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy[J].Molecular Genetics and Genomics,2005,273(1):1-9.

[29]YOSHIDA A,OHMORI Y,KITANO H,et al.ABERRANT SPIKELET AND PANICLE1,encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice[J].The Plant Journal,2012,70(2):327-339.

[30]KHANDAY I,YADAV S R,VIJAYRAGHAVAN U.Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J].Plant Physiology,2013,161(4):1970-1983.

[31]SARASWATI N,RITA S,KUMAR T A,et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

[J].Journal of Experimental Botany,2013,64(14):4239-4253.

[32]XIE S,CHEN M,PEI R,et al.OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1and OsMADS4 in rice[J].Plant Molecular Biology Reporter,2015,33(1):121-132.

[33]BANERJEE A,ROYCHOUDHURY A.The gymnastics of epigenomics in rice[J].Plant Cell Reports,2017,37(S4):1-25.

[34]WAHEED S,LI H,ZENG L H.The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development[J].Genes,2020,11(3):319.

[35]SUN Q,ZHOU D X.Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(36):13679-13684.

[36]LI A,ZHANG Y,WU X,et al. Dh1,a lob domain-like protein required for glume formation in rice[J].Plant Molecular Biology,2008,66(5):491-502.

[37]YOON H Y,YANG J L,LIANG W Q,et al.OsVIL2 regulates spikelet development by controlling regulatory genes in Oryza sativa[J].Frontiers in Plant Science,2018,9:102.

[38]CONRAD L J,KHANDAY I,JOHNSON C,et al.The Polycomb Group Gene EMF2B is essential for maintenance of floral meristem determinacy in rice[J].The Plant Journal,2014,80(5):883-894.

[39]ZHANG L,CHENG Z,QIN R,et al.Identification and characterization of an Epi-Allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice[J].The Plant Cell,2012,24(11):4407-4421.

[40]ZHU Q H,UPADHYAYA N M,GUBLER F,et al.Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice(Oryza sativa)[J].BMC Plant Biology,2009,9:149.

[41]LEE Y S,LEE D Y,CHO L H,et al.Rice miR172 induces flowering by suppressing OsIDS1 and SNB,two AP2 genes that negatively regulate expression of Ehd1 and florigens[J].Rice,2014(7):31.

[42]DAI Z Y,WANG J,ZHU M,et al.OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice[J].Frontiers in Plant Science,2016(7):1891.

[43]PU C X , MA Y,WANG J,et al.Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma,and fertility in rice,by promoting epidermal cell differentiation[J].Plant Journal,2012,70(6):940-953.

[44]LIU H,GUO S,XU Y,et al.OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J].Plant Physiology,2014,165(1):160-174.

[45]LI Y F,ZHENG Y,ADDO-QUAYE C,et al.Transcriptome-wide identification of microRNA targets in rice[J].Plant Journal,2010,62:742-759.

[46]MORITOH S,EUN C H,ONO A,et al.Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2,OsDRM2,impairs the growth of rice plants by abnormal DNA methylation[J].The Plant Journal,2012,71(1):85-98.

[47]TAO J,LIANG W,AN G,et al.OsMADS6 controls flower development by activating rice FACTOR OF DNA METHYLATION LIKE 1[J].Plant Physiol,2018,177:713-727.

(責任编辑:柯文辉)

猜你喜欢

生长素水稻
生长素的两重性剖析
中国水稻栽培现状、存在问题及改进措施
水稻种子
为什么向日葵能够不停地向着太阳转
揭示独脚金内酯抑制PIN依赖性的生长素转运渠化(2020.7.18 Plant Biotechnology Journal)
水稻栽培现状与高产栽培技术建议
水稻栽培现状与高产栽培技术建议
“生长素的极性运输”开放性实验探究和改进
黔北山乡水稻飘香