APP下载

特高含水水驱油藏流场边界动态追踪模型研究

2021-03-25张世明

油气地质与采收率 2021年2期
关键词:流线饱和度流场

张世明,杨 勇

(1.中国石化胜利油田分公司胜利采油厂,山东东营 257051;2.中国石化胜利油田分公司勘探开发研究院,山东东营 257015)

近年来,中国水驱油田大多已进入开发中后期、高含水期或特高含水期,油藏内部油水流动差异明显,剩余油分散富集日益严重。为了高效分析油藏内部流场,使剩余油得到有效开采,基于流动单元的储层精细表征及开发对策研究成为油气藏开发研究的重要手段。早期,流动单元概念由HEARN 等提出,将其定义为纵横向连续、内部地质参数(渗透率、孔隙度、层理等)特征相似的储集带[1]。此后,中外学者指出在开发过程中有明显渗流差异的储集体应分属于不同的流场,可以通过渗流屏障界面或连通体内部的渗流差异界面划分[2-3]。因此,相同流场具有相似的水淹特性及剩余油分布特征。目前,流场边界划分方法主要有2类,以静态地质研究为主的方法包括沉积相法、层次分析法、非均质综合指数法,以聚类等数学手段为主的判别方法包括流动分层指标FZI 法、孔喉几何形状R35法、生产动态参数法、多参数综合法[4-7]。其中,后者综合油藏动态渗流特征及储层空间物理特性,较好地划分了油水渗流差异明显的流场。然而,在油田的开发实践中,储层孔隙结构及渗透率、注水速率、井底压力等物理生产参数会发生动态变化,造成连通体内渗流特性不断变化,流场边界亦随之动态演化[8-10]。因此,为制定油藏动态开发调整方案,有必要深入研究流场边界动态表征方法。目前,类似的研究热点主要集中在油藏两相渗流规律方面,从微观到介观尺度上的孔隙网络模型、MD 模型[11-12]、基于岩石图像数值重构的LBM 数值模型[13-14]已成为主要研究手段,但这些模型无法从宏观尺度上追踪流场边界的动态演化规律。因此,笔者在经典黑油模型基础上结合动态流线追踪方程,引入多相界面追踪方法[15-16]中的界面重构思想,形成了一套综合考虑动静态因素的流场边界定量表征方法,预测及分析了二维及三维流场边界动态演变规律,以期为制定高含水期开发对策、提高油田采收率提供理论支撑。

1 流场边界动态追踪模型

本文建立的流场边界定量表征方法由3部分组成:油水两相渗流数学模型、流线追踪方程及动态界面重构方法。首先,油水两相渗流数学模型将油藏储层静态参数(渗透率、孔隙度)及生产制度动态参数(注水速率、井底压力等因素)均反映到预测的速度及含油饱和度中;其次,流线追踪方程将注采井间的油、水运动规律更直观清晰地表示成流线;最后,动态界面重构方法通过流线及等值线界定高速区与低速区、富水区与富油区。

1.1 油水两相渗流数学模型

在黑油模型[17]的基础上,引入重力和毛管力效应,得到油水两相渗流数学模型,对于油组分和水组分分别为:

1.2 Pollock流线追踪方程

在上述达西方程建立的流体速度场基础上,沿流动方向在单个网格中逐一解析追踪流线[18],网格中的解析表达式为:

1.3 动态界面重构方法

参考Level Set 符号距离函数[19],通过梯度重构定量表征方法识别流场动态边界,划分流场,函数表达式为:

其中,C识别模型是本文研究的关键,通过动态流线与等值线界定。

在二维流场中,C为曲线,由速度差异界面C1和饱和度差异界面C2联合表征,表达式为:

在三维流场中,C为曲面,由速度差异界面C1和饱和度差异界面C2联合表征,表达式为:

因此,高速耗水区定义为在界面C1内且在界面C2内的区域,低速富水区定义为在界面C1外且在界面C2内的区域,高速驱油区定义为在界面C1内且在界面C2外的区域,低速富油区定义为在界面C1外且在界面C2外的区域。

2 二维流场动态边界的定量表征

选取某四注四采井网非均质储层模型对二维流场动态边界进行定量表征。图1给出物理模型参数,其中渗透率选自SPE10 模型[20],注水井w2,w4,w6,w8 的注水速率分别为0.67,1.79,0.2 和0.2 m3/d,采出井w1,w3,w5,w7 的压力分别为16.8,15.5,18.9和18.0 MPa,初始时刻含水饱和度为0.2。将该模型均匀划分为20×20网格,网格步长为25 m,时间步长为10 d,通过流场边界动态识别模型预测0~3 000 d油藏综合流场参数。由第1 500 d 非均质储层速度场(图2)可知,用速度梯度值最大的流线定量表征出渗流速度差异界面,界面包围区域内为高速开发区,界面包围区域外为低速开发区。由第1 500 d非均质储层含水饱和度场(图3)可知,用饱和度梯度值最大的等值线定量表征出含水饱和度差异界面,界面包围区域外含水饱和度低、剩余油含量高,为富油区。联合上述2 类流场动态边界特点,将储层开发区域定义为高速耗水区、高速驱油区、低速富水区、低速富油区(图4)。

图1 非均质储层四注四采井网物理模型(渗透率场)Fig.1 Physical model of four-injection and four-production well pattern in heterogeneous reservoirs(permeability field)

3 三维流场动态边界的定量表征

图2 速度场与速度差异界面Fig.2 Velocity field and interface of velocity difference

图3 含水饱和度与饱和度差异界面Fig.3 Water saturation and interface of saturation difference

选取某四注八采储层模型对三维流场动态边界进行定量表征。储层物理模型的地质描述、注采参数和井网布置如图5—图7所示,该储层模型尺寸为610 m×520 m×10 m,渗透率为1 500 mD,孔隙率为0.3。为确保计算精度,储层x,y,z方向设置网格数量为61×52×10。以目标区块生产参数动态历史为输入参数,注水方案如图5—图6 所示,开始后上层注水井注水速率均迅速增大并恢复稳定在50 m3/d 左右,达到5 599 d 时,UPW_2 和UPW_3 井注水速率分别大幅度提高至65.1 和79.3 m3/d,UPW_1 和UPW_4井注水速率大幅降低,之后均快速恢复至之前的注水速率并趋于稳定;而采油井井底压力整体为升高趋势,达到5 599 d 时存在波动后趋于稳定。以30 d 为时间步长,通过流场边界动态识别模型预测29 617 d 油藏综合流场参数,由图8—图10 可知,用流量通量变化最大的速度等值线沿流线所包围的区域可以合理地表征出渗流速度差异界面,用饱和度通量变化最大的等值线沿流线所包围的区域可以合理地表征出含油饱和度差异界面,联合2 种差异界面可以将三维储层定义为4类流场。

图4 流场动态边界识别结果Fig.4 Identification of dynamic flow field boundaries

图5 采油井井底流压历史Fig.5 Time-history of flowing bottomhole pressure of production wells

图6 注水井注水速率历史Fig.6 Time-history of water injection rate in injection wells

图7 三维地质模型井网布置Fig.7 Well layout of 3D geological model

图8 三维流场动态边界Fig.8 Dynamic boundaries of 3D flow field

图9 速度差异界面Fig.9 Interface of velocity difference

图10 含油饱和度差异界面Fig.10 Interface of oil saturation difference

通过俯视图观察速度差异界面的演变过程(图9b),在油藏注水后,中间注水井与两边的采油井之间产生了速度差异界面,如果注水速率几乎不变,流场动态边界基本不变;达到5 599 d 时,UPW_2 和UPW_3 井的注水速率显著增加,UPW_2 和UPW_3井的注入水一部分流向UPO_1,UPO_2 井和UPO_7,UPO_8井,产生新的速度差异界面。在5 599 d之后,UPW_2 和UPW_3 井的注水速率降低,新的界面消失,因此可以得出:速度差异界面随着注水速率的增大而变大,甚至会产生新的界面;注水速率减小,界面会缩小,部分界面会消失。如图10b 所示,在第500 d 时,含水饱和度较低,界面范围较小,随着水驱油过程的进行,界面慢慢变宽,达到5 599 d时,由于UPW_1 和UPW_3 井注水速率增加,在UPW_2 和UPO_1,UPO_2 以 及UPW_3 和UPO_7,UPO_8 间井产生了新的饱和度差异界面;随后,注水速率降低,新界面消失,其余界面继续慢慢扩大至趋于稳定。因此,本文建立的流场边界动态追踪模型可很好地追踪流场边界诞生、发展、稳定的过程。

4 区块渗流演化规律及开发策略应用

油藏开发中后期,高速驱油区代表最有驱油成效的高效采油区,低速富油区代表具有开发潜力的剩余油富集区,低速富水区代表失去开发潜力的流场,高速耗水区代表过度开发的水流优势通道,因此,将低速富油区转变为高速驱油区、将高速耗水区转变为低速富水区是改善油藏开发效率的主要内部机制。在上述油藏算例中,达到5 660 d 后,高速区与高含水区体积重合率达到90%以上,此时剩余油主要富集在低速区中,采油井之间驱替效率很低。针对上述问题,制定开发策略:关闭井UPW_1,UPW_2,UPW_3,UPW_4,新加井UPW_5和UPW_6,观察调整后流场(图11,图12),高速区向富油区明显转移,驱替剩余油效果明显变好。因此,本文所建立的流场边界动态追踪模型可以为制定开发调整研究提供理论基础。

5 结论

建立动态界面重构方法,以流线平均速度梯度、流线平均饱和度梯度作为定量表征二维流场动态边界,以主截面速度等值线内通量、主截面饱和度等值线内含水量作为定量表征三维流场动态边界,并应用于二维及三维油藏区块,追踪了速度差异界面及饱和度差异界面的演化过程;耦合油水两相渗流数学模型、Pollok 流线追踪方程、动态界面重构方法构建了流场边界动态追踪模型,将储层划分为高速驱油区、高速耗水区、低速富水区、低速富油区。采用流场边界动态追踪模型预测油藏区块流场动态边界演化规律是制定开发策略的有效方法。

图11 速度差异演化界面Fig.11 Interface change of velocity difference

图12 含油饱和度差异演化界面Fig.12 Interface change of oil saturation difference

符号解释

Ai——所在等值线;

C——流场动态边界;

C1——速度差异界面;

C2——饱和度差异界面;

d——坐标点(x,y)到边界C的距离;

D——某一基准面算起的深度,与重力加速度方向相同,m;

g——重力加速度,m/s2;

K——油藏的绝对渗透率,mD;

Kro,Krw——油、水相的相对渗透率,无因次;

mx,my——沿着网格块x和y方向的速度梯度;

po,pw——油、水相的压力,MPa;

qo,qw——油、水相在单位时间、单位体积岩石中注入(或采出)的质量流量,kg/(m3·s);

S1——正向速度梯度平均值最大的流线;

S2——负向速度梯度平均值最大的流线;

S3——正向饱和度梯度平均值最大的流线;

S4——负向饱和度梯度平均值最大的流线;

SA1——主截面通量变化最大的速度等值线A1沿流线组成的曲面;

SA2——主截面含水量变化最大的含水饱和度等值线A2沿流线组成的曲面;

Si——所在流线;

So,Sw——油、水相的饱和度,f;

t——时间,s;

Δte——流体流出网格的最小时间,s;

vx,0,vy,0——网格原点位置的x和y方向的速度,m/s;

vx,i,vy,i——流线进入网格点的x和y方向的速度,m/s;

x,y,z——网格方向;

(x0,y0)——网格原点位置;

(xe,ye)——流线穿过网格的出口坐标;

ρo,ρw——油、水相的密度,kg/m3;

φ——孔隙度,f;

μo,μw——油、水相的黏度,Pa·s;

猜你喜欢

流线饱和度流场
糖臬之吻
大型空冷汽轮发电机转子三维流场计算
几何映射
任意夹角交叉封闭边界内平面流线计算及应用
基于HYCOM的斯里兰卡南部海域温、盐、流场统计分析
制作一个泥土饱和度测试仪
基于瞬态流场计算的滑动轴承静平衡位置求解
基于国外两款吸扫式清扫车的流场性能分析
巧用有机物的不饱和度
柔情粉色