添加不同外源氮对水稻秸秆腐解和养分释放的影响
2021-02-19麦逸辰卜容燕雷之萌程文龙
麦逸辰,卜容燕,韩 上,雷之萌,李 敏,王 慧,程文龙,唐 杉,武 际,朱 林
添加不同外源氮对水稻秸秆腐解和养分释放的影响
麦逸辰1,2,卜容燕2,韩 上2,雷之萌1,3,李 敏2,王 慧2,程文龙2,唐 杉2,武 际2※,朱 林1
(1. 安徽农业大学资源与环境学院,合肥 230036;2. 安徽省农业科学院土壤肥料研究所/养分循环与资源环境安徽省重点实验室,合肥 230031;3. 泰安市肥城市老城街道初级中学,泰安 271601)
探究添加不同外源氮对水稻秸秆腐解规律和养分释放特征的影响,为提高水稻秸秆养分利用提供理论依据。该研究采用室内恒湿网袋培养法,设置4个处理:不添加外源氮(CK);添加尿素(PU);添加尿素硝酸铵(UAN);添加石灰氮(CaCN2)。结果表明:水稻秸秆腐解规律表现为0~5 d腐解速率最大,为0.39~0.47 g/d;5~30 d腐解速率较快,为0.12~0.16 g/d;30~150 d腐解缓慢并趋于平稳,腐解速率为0.045~0.050 g/d。与CK相比,添加外源氮可以显著提高水稻秸秆的累积腐解率(< 0.05)。虽然秸秆累积腐解率在不同外源氮处理间差异不显著,但是不同外源氮的添加对水稻秸秆不同时期的腐解特征有着显著影响。主要表现在0~30 d PU、UAN和CaCN2处理水稻秸秆腐解速率分别为0.21、0.20和0.19 g/d,PU处理比UAN和CaCN2处理分别高5.00%和10.53%;在该时间段纤维素和半纤维素腐解率占累积腐解率的比例分别为63.65%和47.02%,这表明纤维素和半纤维素腐解主要集中在秸秆腐解前期,且PU处理对纤维素和半纤维素的促腐效果最佳。30~150 d PU、UAN和CaCN2处理腐解速率分别为0.046、0.046和0.050 g/d,CaCN2比PU和UAN处理高8.70%;在该时间段木质素腐解率占累积腐解率的比例为82.45%,这表明木质素腐解主要集中在秸秆腐解后期,且CaCN2处理对木质素的促腐效果最佳。由此可见PU处理前期促腐效果最佳,CaCN2处理后期促腐效果最佳。综合不同外源氮对水稻秸秆的促腐效应,建议不同种类外源氮进行配施,以达到最佳促腐效果。
尿素;腐解;水稻秸秆;尿素硝酸铵;石灰氮
0 引 言
中国是农业生产大国。据统计,中国粮食作物年产超过6亿t[1],秸秆资源量年均约7亿t[2]。作物秸秆含有丰富的营养元素,秸秆总养分年产2 000万t左右,其中氮含量约700万t、磷含量约200万t、钾含量约1 000万t[3]。秸秆还田不仅可以实现有机养分循环再利用、促进作物生长、替代化肥[4-5],还能改善土壤理化性质,培肥土壤[6-8]。秸秆大量还田后,如果不加速腐解,易造成土壤泡沫化,影响下茬作物生长[9-10]。且大量秸秆还田易造成植物缺氮,导致作物减产[11-13]。因此探明秸秆腐解规律是提高秸秆还田利用效率的关键。
长期研究结果表明调节还田秸秆C/N有利于促进秸秆腐解和养分释放,提高作物产量[14]。其主要措施是通过添加外源氮调节土壤和秸秆的C/N,提高微生物活性,以此促进秸秆的腐解[15]。此外,秸秆还田后氮肥前移促进了秸秆养分释放,提高作物产量[16]。这是因为秸秆本身C/N较高,影响了土壤氮素供应。秸秆化学组分不同,微生物分解物质的速率也存在较大差异。例如豆科绿肥秸秆C/N值为15∶1~20∶1,这类秸秆需要提升C/N以满足微生物分解所需的碳源。而水稻秸秆、小麦秸秆等C/N值为50∶1~60∶1[17],因此合理调节还田秸秆C/N是促进秸秆腐解的关键。
安徽省是水稻主产省份,其中水稻秸秆生物量最大,占全省秸秆资源总量的1/3以上,其氮、磷、钾养分总量为51.1万t,占全省秸秆总养分量的40%左右,远高于其他秸秆养分总量[18]。安徽稻作区多数进行两熟制种植,水稻收获后至下一茬作物播种存在茬口紧张的现象。且水稻秸秆C/N较高,富含半纤维素和木质素,短期内不易腐解,影响下茬作物生长。因此促进水稻秸秆腐解是当前亟需解决的问题。添加外源氮是促进秸秆腐解的重要措施,以往的研究表明氮素类型是影响促腐效果的重要因素。尿素是一种固态酰胺态氮肥,可以快速水解为铵态氮供微生物利用,促进微生物的繁殖,有利于微生物对秸秆的分解作用[19];尿素硝酸铵是近年发展迅速的液态肥料,为水溶性铵态氮,可以直接渗入秸秆并被吸收,对加快秸秆养分释放效果明显[20];氰氨态氮是一种迟效氮肥,施入土壤后在水分的作用下生成强氧化钙和氰氨,其中氰氨通过水解作用再转化为尿素,然后通过进一步水解生成碳酸铵,对秸秆有机质的分解和改良pH的效果明显[21]。前人的研究主要针对适宜外源氮添加的比例,较少考虑不同种类外源氮对秸秆腐解的影响。所以本研究采用模拟培养的方法,通过添加不同的外源氮,对比研究水稻秸秆腐解规律以及养分释放规律,深入分析不同种类外源氮对水稻秸秆的促腐效果,以期筛选出最适宜的氮源,为秸秆资源高效利用提供理论依据。
1 材料与方法
1.1 试验概况
本试验采用室内恒温恒湿网袋培养法,试验于安徽省农业科学院开展。供试土壤基础理化性质:有机质16.77 g/kg,全氮1.18 g/kg,有效磷8.22 mg/kg,速效钾109.02 mg/kg,pH值5.57。供试水稻秸秆养分含量:全碳399.1 g/kg,全氮10.2 g/kg,全磷1.0 g/kg,全钾21.2 g/kg。秸秆有机组分含量:纤维素496.3 g/kg,半纤维素149.6 g/kg,木质素189.8 g/kg。
1.2 试验设计
试验共设置4个处理:1)不添加外源氮(CK);2)添加尿素(PU,固态酰胺态氮);3)添加尿素硝酸铵(UAN,水溶态酰胺态氮);4)添加石灰氮(CaCN2,氰胺态氮)。每个处理设3次重复,即每个处理每次取样设置3盆供采样分析。采用室内尼龙网袋翻埋法,网袋规格为25 cm×15 cm,孔径0.048 mm。秸秆剪成2~3 cm小段,风干后将其装入网袋并封紧袋口,埋于20 cm×25 cm的塑料桶中,每桶装8 kg土壤。网袋距离土层表面5 cm。每盆埋1袋,每袋装25 g秸秆。按照0.05 g N/kg土的比例进行添加[22-23]。将外源氮与塑料桶中土壤充分混匀,供试土壤田间持水量为38.6%,参考杨苏、王婧等[24-25]的培养试验,本试验采用恒湿恒温培养,其中培养湿度为田间持水量的60%,即土壤湿度为23.2%。培养温度为25 ℃。试验周期为150 d,分别在第0、5、10、30、60、90、120、150天进行破坏性取样,每个处理每次取样设置3盆重复供采样分析,整个培养周期8次取样,因此每个处理共设置24盆。每次取样前2 d不再进行水分补充,在取样当天轻轻移出网袋上方的土壤,然后取出网袋,取样后用清水轻轻地冲刷网袋表面的土壤,60 ℃烘干备用[26]。
1.3 测定项目与方法
将培养后取出的网袋里面的秸秆取出烘干至水分完全蒸发,利用失重法测定秸秆残留量。即培养后秸秆烘干重量。样品经过粉碎后测定秸秆全碳、全氮、全磷、全钾含量并计算其养分释放率。全碳采用外加热-重铬酸钾容量法测定;全氮采用半微量开氏定氮法测定;全磷采用钼锑抗比色法测定;全钾采用火焰光度计法测定[27]。纤维素、半纤维素、木质素采用定量分析程序法测定[28]。中性洗涤剂去除秸秆可溶性糖类,用2 mol/L的盐酸水解测定半纤维素,滤液用地衣酚法由木糖标准曲线测定纤维素含量,剩余滤渣经丙酮清洗并由硫酸水解过滤,滤液采用蒽酮定糖法由葡萄糖标准曲线测定纤维素含量,滤渣550 ℃灰化后称质量测定木质素含量。田间持水量采用毛细吸渗法测定[29]。
1.4 计算方法
秸秆腐解率(decomposition rate of straw,%)和秸秆腐解速率(accelerating decomposition rate of straw,g/d)由式(1)和式(2)计算。
秸秆腐解率=(0-)/0×100% (1)
秸秆腐解速率=(M-M+1)/(T-T+1) (2)
式中0表示培养前秸秆质量,g;表示秸秆残留量,g;M表示培养时刻的秸秆质量,g;M+1表示培养+1时刻的秸秆质量,g;T表示时刻的培养天数,d;T+1表示+1时刻的天数,d。
碳养分释放率(nutrient release rate of carbon,%)(氮、磷和钾养分释放率计算方法与碳养分相同),纤维素累积腐解率(cumulative decomposition rate of cellulose,%)(半纤维素、木质素含量计算方法与纤维素相同)由式(3)和式(4)计算。
碳养分释放率=(0-)/0×100% (3)
纤维素累积腐解率=(0-)/0×100% (4)
式中0表示培养前秸秆碳养分含量,g/kg;表示剩余秸秆碳养分含量,g/kg;0表示培养前秸秆纤维素含量,g/kg;表示剩余秸秆纤维素含量,g/kg。
水稻秸秆、有机组分(纤维素、半纤维素、木质素)腐解率用一级动力学方程[30-33](first order kinetic equation)由式(5)表示。
=·(1-e-b·t) (5)
式中为时刻累积腐解率,%;为最大腐解率,%;为平均腐解速率,%/d;为腐解天数,d。
1.5 数据分析
采用Excel 2010进行数据分析,Origin 2019进行一级动力学方程拟合、图形绘制,SPSS 24.0软件进行方差分析、多重比较(Duncan)(<0.05)。
2 结果与分析
2.1 水稻秸秆累积腐解特征
由图1可知,水稻秸秆累积腐解率呈现先快后慢的特征。水稻秸秆腐解规律表现为0~5 d秸秆腐解速率最快,达到0.39~0.47 g/d,累积腐解率为7.25%~8.79%;5~30 d秸秆腐解速率较快,为0.12~0.16 g/d,累积腐解率为10.95%~14.94%;30~150 d腐解速率放缓,腐解速率0.045~0.050 g/d,累积腐解率为15.48%~19.90%。在150 d的培养试验中,CK、PU、UAN和CaCN2处理平均腐解速率分别为0.070、0.076、0.077和0.078 g/d,累积腐解率分别为39.24%、42.61%、43.23%和43.70%。0~5 d PU处理水稻腐解速率比UAN和CaCN2处理分别高16.56%和21.38%;5~30 d PU处理水稻秸秆腐解速率比UAN和CaCN2处理分别高2.74%和7.14%;30~150 d CaCN2处理比PU和UAN处理均高11.76%,添加外源氮显著提高了水稻秸秆腐解速率,促进了水稻秸秆累积腐解率(<0.05)。从水稻秸秆不同时期腐解特征上分析可知,不同外源氮处理间差异显著。主要表现在0~5 d PU处理腐解速率最快,5~30 d三个处理间差异不明显,但均显著高于CK。总的来说,在0~30 d PU、UAN和CaCN2处理水稻秸秆腐解速率分别为0.21、0.20和0.19 g/d,PU处理比UAN和CaCN2处理分别高5.00%和10.53%;30~150 d PU、UAN和CaCN2处理腐解速率分别为0.046、0.046和0.050 g/d,CaCN2比PU和UAN处理高8.70%。
根据一级动力学方程=·(1-e-b·t)(表1)可知,不同处理间秸秆最大腐解率(值)表现为CaCN2>PU>UAN>CK。其中CaCN2最大腐解率(值)最高,为43.12%,分别比PU、UAN和CK处理高0.082%、0.10%、0.13%。其次是PU处理,比UAN和CK处理高0.021%、0.042%。
表1 不同外源氮处理下水稻秸秆腐解率一级动力学方程拟合
2.2 水稻秸秆养分释放特征
2.2.1 不同外源氮处理碳素释放特征
150 d培养周期内,CK、PU、UAN和CaCN2处理碳素平均释放速率分别为1.08、1.22、1.26和1.20 g/d;如图2所示,累积释放率分别为40.66%、45.70%、47.31%和44.91%。方差分析表明添加外源氮在腐解前期和后期显著增加了水稻秸秆碳素释放速率和累积释放率,这与平均释放速率规律相似。不同外源氮的添加对水稻秸秆不同时期的碳释放有显著影响,主要表现为0~5 d不同外源氮处理差异显著。外源氮促腐作用明显,其中UAN腐解速率最高,为10.76 g/d。5~30 d各处理腐解速率差异较小。30~150 d外源氮处理皆具有显著促腐效果,但处理间差异不明显。比较不同时期各处理碳素释放情况发现0~30 d添加外源氮处理间差异显著(<0.05),30~120 d处理间差异不显著,120 d后,外源氮处理碳素释放速率较高。
2.2.2 不同外源氮处理氮素释放特征
如图3所示,150 d培养周期内,CK、PU、UAN和CaCN2处理氮素平均释放速率分别为0.030、0.033、0.035和0.033 g/d;累积释放率分别为44.76%、48.75%、51.31%和49.03%。PU和UAN处理0~5 d促腐效果明显。5~30 d UAN处理累积腐解率最高,30 d后CaCN2处理腐解增速较快。总体而言,与CK相比,添加外源氮促进了水稻秸秆氮素释放。比较不同时期各处理氮素释放情况发现0~30 d PU和UAN处理释放速率显著高于CaCN2,30~120 d CaCN2处理氮素释放速率显著高于其他处理。120 d后,UAN处理氮素释放较快。
2.2.3 不同外源氮处理磷素释放特征
水稻秸秆磷素释放特征与累积腐解率相似(图4)。150 d各处理累积释放率分别为40.46%、45.94%、46.80%和45.83%。不同处理0~5 d磷素释放速率最快,5~30 d为快速释放期,30~120 d为缓慢释放期,120~150 d释放速率较上一阶段有所上升,添加外源氮处理磷素的释放速率高于CK处理。比较不同时期各处理磷素释放规律,发现0~5 d处理间差异不显著,5~30 d PU和CaCN2处理促腐效果较好,120~150 d UAN处理释放速率最高。
2.2.4 不同外源氮处理钾素释放特征
水稻秸秆钾素释放处理间无明显差异(图5),90 d时几乎完全释放。CK、PU、UAN和CaCN2处理累积释放率分别为94.10%、94.37%、94.61%、94.89%。0~30 d 4个处理钾素释放速率提升,30 d时释放率占总量的66.20~76.12%,其中CaCN2最快,CK次之,UAN和PU稍慢,释放速率分别为0.54、0.48、0.47和0.47 g/d。30~60 d 各处理释放速率降低,但PU和UAN处理速率较高,为0.090 g/d。60~90 d 4个处理释放速率皆有所提升,处理间差异不明显,并且在90 d的时候钾素释放率趋于最大值。
2.3 不同外源氮处理有机组分腐解特征
2.3.1 不同外源氮处理纤维素腐解特征
如图6所示,CK、PU、UAN和CaCN2处理纤维素平均腐解速率为0.034、0.039、0.038、0.038 g/d,累积腐解率为39.10%、43.99%、43.15%、43.12%,外源氮0~30 d促腐作用显著。水稻秸秆纤维素腐解规律表现为0~30 d快速腐解,30~90 d腐解稍慢,90~150 d腐解速率加快。在三个时间段,纤维素腐解率占累积腐解率的比例平均为63.65%、20.51%和15.84%,纤维素腐解在0~30 d占比最大。对比分析三个不同外源氮添加处理可知,在秸秆腐解前期,0~5 d PU和UAN处理纤维素腐解速率最大,最有利于促进纤维素的腐解。5~30 d PU和CaCN2腐解速率较高,促腐效果明显。
2.3.2 不同外源氮处理半纤维素腐解特征
水稻秸秆半纤维素腐解特征与纤维素腐解特征相似,外源氮处理有明显促腐效果(图7)。150 d外源氮处理平均腐解速率为0.010~0.011 g/d,腐解率为39.49%~40.07%。不同外源氮处理半纤维素腐解率表现为0~30 d快速腐解,30~90 d腐解稍慢,90~150 d腐解速率加快。在3个时间段,半纤维素腐解率占累积腐解率的比例平均为47.02%、21.48%和31.50%。其中PU和UAN处理在前期的腐解速率最快,CaCN2处理在试验中期腐解速率显著高于其他处理。
2.3.3 不同外源氮处理木质素腐解特征
水稻秸秆木质素腐解规律在不同处理间具有明显差异(图8)。CK、PU、UAN和CaCN2平均腐解速率为0.010、0.013、0.013、0.014 g/d,累积腐解率表现为29.47%、39.49%、38.60%、41.51%。木质素腐解率表现为0~30 d腐解较慢,30~90 d腐解速率大幅提升,90~150 d速率降低。三个时间段木质素腐解率占累积腐解率的比例平均为17.55%、56.72%和25.73%。对比分析不同时间段木质素的腐解速率可以发现,木质素在30 d后腐解速率提高,外源氮促腐作用显著,CaCN2全程显著促进木质素腐解,30~150 d木质素腐解率占累积腐解率的比例为82.45%。
采用一级动力学方程对不同外源氮处理下水稻秸秆纤维素、半纤维素、木质素腐解特征进行拟合,均达到显著水平(表2)。根据结果可知,纤维素腐解速率最大,其次是半纤维素,木质素最低。添加PU、UAN、CaCN2处理的纤维素最大腐解率(值)分别比CK处理高13.23%、10.65%、11.29%,其中PU处理效果最优;添加PU、UAN、CaCN2处理有利于提高半纤维素的最大腐解率(值),分别比CK处理高6.40%、5.89%、4.74%;添加外源氮均增加木质素腐解率,其中CaCN2处理对木质素的促腐效果最佳。
表2 不同外源氮处理下水稻秸秆木质素、纤维素、半纤维素一级动力学拟合方程相关参数
注:表中**表示不同处理之间差异极显著(< 0.01)。
Note: The table**shows that the difference between different treatments is very significant (< 0.01).
3 讨 论
3.1 水稻秸秆腐解特征及养分释放规律
本试验结果表明,不同处理间水稻秸秆腐解过程表现为前期快速腐解,后期腐解速率放缓并趋于平稳的趋势。本研究中水稻秸秆150 d内的累积腐解率为39.24%~43.70%。这与国内外其他相关研究结果相似[33-34]。武际等[26]利用埋袋法研究发现,秸秆腐解均经历了快速腐解期、腐解减缓期和腐解缓慢期。究其原因可能是在腐解的前期,秸秆中如糖类、氨基酸、有机酸等非结构性、易分解物质快速释放[35],同时也为土壤微生物提供大量的营养物质,增加土壤微生物的多样性和活性,加速水稻秸秆分解[36]。随着易分解物质被消耗殆尽,剩余一些难分解的物质,从而减缓了秸秆后期的腐解速率[37]。与前人的研究结果相似,养分释放率总体表现为钾素释放率显著高于碳、氮、磷[31-32]。这与营养元素在秸秆中存在的形态有关[38]。钾以离子态存在,易于浸提释放,而碳、氮、磷三种元素以有机化合物形式为主,胶结程度高,养分释放能力较弱[39]。总的来说,水稻秸秆中氮、碳和磷素的释放规律和腐解规律趋势一致,均表现为前期快速腐解,后期腐解速率放缓并趋于平稳的趋势,150 d养分累积释放率在40%~50%左右。
3.2 不同外源氮处理对水稻秸秆腐解的影响
添加外源氮可以调节秸秆和土壤C/N,增加微生物的多样性和活性,提升微生物对秸秆的分解能力,促进了水稻秸秆腐解[37],因此提高土壤氮素水平是促进秸秆腐解和养分释放的重要手段。本研究中,添加外源氮后水稻秸秆腐解率明显增加,这和曾莉等[13]的研究结果一致。不同外源氮促腐表现不同,在水稻秸秆腐解前期PU处理促腐效果最佳,而在水稻秸秆腐解后期CaCN2处理促腐效果最佳。究其原因可能和不同外源氮形态及氮素释放改变微生物群落结构影响土壤环境有关[40-41]。对比分析三种不同形态的外源氮发现,PU为固体酰胺态氮,可以通过脲酶快速水解为铵态氮供微生物利用,UAN为水溶性铵态氮可以直接渗入秸秆被吸收[42],因此PU和UAN可以快速释放氮素调节土壤C/N促进水稻秸秆腐解。CaCN2施入土壤后在水分的作用下生成强氧化钙和氰氨,氰氨通过水解作用再转化为尿素,最后通过进一步水解生成碳酸铵[43],因此CaCN2中氮素释放速度较慢,是一种迟效氮肥。除了氮素释放速率存在差异以外,不同外源氮施入土壤后对土壤化学性质的影响也存在较大的差异。以往的研究已经证实PU在水解过程中会消耗土壤中的H+,在一定程度上会提升土壤的pH,促进微生物的繁殖,有利于微生物对秸秆的分解作用[44],但是PU施入土壤一段时间后,铵根离子通过硝化细菌氧化为亚硝酸盐和硝酸盐,土壤pH降低,当pH降低到一定范围时,微生物活性会受到影响[45],导致PU促腐效果减弱。Hu等[46]研究也发现,尿素进入土壤后,在12 d时土壤pH略上升;在30 d时土壤pH降到施入前水平。汪敬恒等[23]也有相似的发现。CaCN2是一种强碱性的绿色肥料,pH值在12.4左右[21]。Kazuki等[47]研究表明CaCN2施入土壤后土壤pH值立即增加到10.7~11.1,在培养结束时维持在8.8~9.5,因此CaCN2施入土壤后,在逐渐转化过程中具有调节土壤酸度,减少氮素损失的作用,所以提高微生物活性促进秸秆腐解具有迟效性[48]。
水稻秸秆纤维素、半纤维素、木质素的腐解速率直接决定了水稻秸秆不同时期的腐解速率[49]。在本试验条件下PU处理促进纤维素分解效果最佳;PU和UAN处理促进半纤维素分解效果相似,明显高于CK和CaCN2处理;而对于木质素的分解,CaCN2处理效果显著高于其他处理。这可能和纤维素、半纤维素、木质素结构有关。纤维素、半纤维素是葡萄糖、木糖等分子组成的网状结构,能通过纤维素酶作用水解[50],相对于木质素来说,较易分解。因此纤维素和半纤维素分解发生在水稻秸秆腐解前期。相对于CaCN2这种迟效性肥料来说,PU和UAN添加到土壤后能快速释放氮素调节秸秆和土壤C/N,改善土壤微生物活性,从而促进了纤维素和半纤维素的分解[45]。而木质素是由苯丙烷组成的大分子结构,稳定性强,酶和真菌降解缓慢[51],难以分解。一般木质素的分解发生在水稻秸秆腐解后期。在本试验条件下,添加的CaCN2是一种碱性的肥料,在逐渐水解的过程中提高土壤pH有利于破坏木质素的结构,促进其分解[21]。此外,也有研究指出CaCN2生成氰胺类物质可以促进氧化酶的活性[52],氧化酶是促进木质素分解的主要酶之一。本研究发现在水稻秸秆腐解的0~30 d、30~90 d和90~150 d三个时间段内,纤维素腐解率占累积腐解率的比例平均为63.65%、20.51%和15.84%;半纤维素平均为47.02%、21.48%和31.50%;木质素平均为17.55%、56.72%和25.73%。添加PU处理有利于水稻秸秆纤维素和半纤维素等易分解物质的腐解,因此提高了水稻秸秆前期腐解速率;而CaCN2有利于木质素这类难分解物质的腐解,因此提高了水稻秸秆后期腐解速率。综上所述,合理的添加外源氮显著促进水稻秸秆腐解和养分释放,在综合考虑不同外源氮的促腐效应的基础上,针对田间实际生产,建议不同种类外源氮进行配施,以达到最佳促腐效果。
4 结 论
1)不同处理水稻秸秆腐解总体上均表现为0~5 d秸秆腐解速率最快,达到0.39~0.47 g/d,累积腐解率为7.25%~8.79%;5~30 d秸秆腐解速率较快,为0.12~0.16 g/d,累积腐解率为10.95%~14.94%;30~150 d腐解速率放缓,腐解速率0.045~0.050 g/d,累积腐解率为15.48%~19.90%。
2)经过150 d培养,CK、PU、UAN和CaCN2处理累积腐解率分别为39.24%、42.61%、43.23%和43.70%。添加外源氮显著促进水稻秸秆腐解。不同外源氮处理间水稻秸秆累积腐解率差异不显著,但不同腐解时期差异显著。0~5 d PU处理水稻腐解速率比UAN和CaCN2处理分别高16.56%和21.38%;5~30 d PU处理水稻秸秆腐解速率比UAN和CaCN2处理分别高2.74%和7.14%;30~150 d CaCN2处理比PU和UAN处理均高11.76%,在水稻秸秆腐解前期(0~30 d)PU处理腐解速率最高,腐解后期(30~150 d)CaCN2处理促腐效果优于PU处理和UAN处理。
3)添加PU促进了纤维素和半纤维素这类易分解物质的腐解,因此PU和UAN有利于秸秆前期腐解;添加CaCN2促进了木质素这类难分解物质的腐解,因此CaCN2有利于秸秆后期腐解。
[1] 中国国家统计局 [EB/OL]. 中国统计年鉴,2018-9-20. http://www. stats. gov. cn/tjsj/ndsj/2020/indexch. htm.
[2] 宋大利,侯胜鹏,王秀斌,等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报,2018,24(1):1-21.
Song Dali, Hou Shengpeng, Wang Xiubin, et alNutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. (in Chinese with English abstract)
[3] 牛新胜,巨晓棠. 我国有机肥料资源及利用[J]. 植物营养与肥料学报,2017,23(6):1462-1479.
Niu Xinsheng, Ju Xiaotang. Organic fertilizer resources and utilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1462-1479. (in Chinese with English abstract)
[4] 卜容燕,李敏,韩上,等. 有机无机肥配施对双季稻轮作系统产量、温室气体排放和土壤养分的综合效应[J]. 应用生态学报,2021,32(1):145-153.
Bu Rongyan, Li Min, Han Shang, et al. Comprehensive effects of combined application of organic and inorganic fertilizer on yield, greenhouse gas emissions, and soil nutrient in double-cropping rice systems[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 145-153. (in Chinese with English abstract)
[5] 武际,郭熙盛,鲁剑巍,等. 水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响[J]. 植物营养与肥料学报,2012,18(3):587-594.
Wu Ji, Guo Xisheng, Lu Jianwei, et al. Effects of continuous straw mulching on soil physical and chemical properties and crop yields in paddy-upland rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 587-594. (in Chinese with English abstract)
[6] Elaine M, Clemens S, David W R, et al. The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil[J]. Soil Biology and Biochemistry, 2016, 101: 104-113.
[7] 戴志刚,鲁剑巍,李小坤,等. 不同作物还田秸秆的养分释放特征试验[J]. 农业工程学报,2010,26(6):272-276.
Dai Zhigang, Lu Jianwei, Li Xiaokun, et al. Nutrient release characteristic of different crop straws manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 272-276. (in Chinese with English abstract)
[8] 韩上,武际,李敏,等. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质[J]. 植物营养与肥料学报,2020,26(2):276-284.
Han Shang, Wu Ji, Li Min, et al. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese with English abstract)
[9] 张娟霞,刘伟刚,宁媛,等. 长期秸秆还田与施氮后土壤活性碳、氮的变化[J]. 水土保持学报,2018,32(3):212-217.
Zhang Juanxia, Liu Weigang, Ning Yuan, et al. Changes of active carbon and nitrogen in soil after long-term straw returning and nitrogen application[J]. Journal of Soil and Water Conservation, 2018, 32(3): 212-217. (in Chinese with English abstract)
[10] 丛日环,张丽,鲁艳红,等. 添加不同外源氮对长期秸秆还田土壤中氮素转化的影响[J]. 植物营养与肥料学报,2019,25(7):1107-1114.
Cong Rihuan, Zhang Li, Lu Yanhong, et al. Effect of adding different exogenous nitrogen sources on nitrogen transformation in long-term straw incorporated soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1107-1114. (in Chinese with English abstract)
[11] 黄玲,张自阳,赵若含,等. 秸秆配施腐熟剂对土壤细菌群落及养分状况的影响[J]. 土壤通报,2019,50(6):1361-1369.
Huang Ling, Zhang Ziyang, Zhao Ruohan, et al. Effects of straw decomposing inoculants on soil bacterial communities and nutrients[J]. Chinese Journal of Soil Science, 2019, 50(6): 1361-1369. (in Chinese with English abstract)
[12] 王秋菊,刘峰,迟凤琴,等. 秸秆还田及氮肥调控对不同肥力白浆土氮素及水稻产量影响[J]. 农业工程学报,2019,35(14):105-111. Wang Qiuju, Liu Feng, Chi Fengqin, et al. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 105-111. (in Chinese with English abstract)
[13] 曾莉,张鑫,张水清,等. 不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征[J]. 植物营养与肥料学报,2020(9):1565-1577.
Zeng Li, Zhang Xin, Zhang Shuiqing, et al. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2020(9): 1565-1577. (in Chinese with English abstract)
[14] 刘颖颖,卜容燕,唐杉,等. 连续秸秆-紫云英协同还田对双季稻产量、养分积累及土壤肥力的影响[J]. 植物营养与肥料学报,2020,26(6):1008-1016.
Liu Yingying, Bu Rongyan, Tang Shan, et al. Effect of continuous straw-Chinese milk vetch synergistic return to the field on yield, nutrient accumulation and soil fertility of double cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1008-1016. (in Chinese with English abstract)
[15] 李晓韦,韩上,雷之萌,等. 氮素形态对油菜秸秆腐解及养分释放规律的影响[J]. 中国生态农业学报(中英文),2019,27(5):717-725.
Li Xiaowei, Han Shang, Lei Zhimeng, et al. Effects of nitrogen forms on decomposition and nutrient release of rapeseed straw[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 717-725. (in Chinese with English abstract)
[16] 韩上,武际,李敏,等. 秸秆还田条件下氮肥运筹对作物产量和氮肥利用效率的影响[J]. 中国土壤与肥料,2020(3):23-28.
Han Shang, Wu Ji, Li Min, et al. Effects of nitrogen fertilization managements on crops yield and nitrogen nutrient use efficiency under straw returning[J]. Soil and Fertilizer Sciences in China, 2020(3): 23-28. (in Chinese with English abstract)
[17] 张经廷,张丽华,吕丽华,等. 还田作物秸秆腐解及其养分释放特征概述[J]. 核农学报,2018,32(11):2274-2280.
Zhang Jingting, Zhang Lihua, Lyu Lihua, et al. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2274-2280. (in Chinese with English abstract)
[18] 程文龙,韩上,李敏,等. 主要农作物秸秆养分资源现状及其肥料替代潜力分析-以安徽省为例[J]. 中国生态农业学报(中英文),2020,28(11):1789-1798.
Cheng Wenlong, Han Shang, Li Min, et al. Current situation of the main crop straw nutrient resources and the substitute potential of crop straw for chemical fertilizer: A case study of Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1789-1798. (in Chinese with English abstract)
[19] 于春晓,张丽莉,杨立杰,等. 减氮配施抑制剂及鸡粪提高尿素氮在稻田土壤中的转化及利用[J]. 植物营养与肥料学报,2021,27(9):1581-1591.
Yu Chunxiao, Zhang Lili, Yang Lijie, et al. Combining N-inhibitor and chicken manure with reduced N fertilizer to improve the conversion and utilization of fertilizer N in a paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1581-1591. (in Chinese with English abstract)
[20] 李帆,王静,武际,等. 尿素硝酸铵调节碳氮比促进小麦秸秆堆肥腐熟[J]. 植物营养与肥料学报,2019,25(5):832-840.
Li Fan, Wang Jing, Wu Ji, et al. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 832-840. (in Chinese with English abstract)
[21] 朱炳良,马军伟,叶雪珠,等. 石灰氮的土壤改良作用及对蔬菜的施用效果研究[J]. 浙江大学学报:农业与生命科学版,2001(3):105-108.
Zhu Bingliang, Ma Junwei, Ye Xuezhu, et al. Effects of lime-nitrogen on soil ameliorate and vegetables production[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2001(3): 105-108. (in Chinese with English abstract)
[22] 朱远芃,金梦灿,马超,等. 外源氮肥和腐熟剂对小麦秸秆腐解的影响[J]. 生态环境学报,2019,28(3):612-619.
Zhu Yuanpeng, Jin Mengcan, Ma Chao, et al. Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues [J]. Ecology and Environmental Sciences, 2019, 28(3): 612-619. (in Chinese with English abstract)
[23] 汪敬恒,谢迎新,杨素芬,等. 室内培养条件下多元素长效颗粒碳铵与尿素氮素释放规律比较研究[J]. 中国农学通报,2019,35(20):59-64.
Wang Jingheng, Xie Yingxin, Yang Sufen, et al. Comparative study on nitrogen release characteristics of long-acting ammonium bicarbonate and urea under indoor culture condition[J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 59-64. (in Chinese with English abstract)
[24] 杨苏,刘耀斌,章欢,等. 土壤不同形态碳氮含量和酶活性对培养时间及外源碳投入的响应[J]. 水土保持学报,2020,34(4):340-346.
Yang Su, Liu Yaowu, Zhang Huan, et al. Responses of different forms of soil carbon and nitrogen contents and enzyme activities to cultivation time and exogenous carbon input[J]. Journal of Soil and Water Conservation 2020, 34(4): 340-346. (in Chinese with English abstract)
[25] 王婧,张莉,逄焕成,等. 秸秆颗粒化还田加速腐解速率提高培肥效果[J]. 农业工程学报,2017,33(6):177-183.
Wang Jing, Zhang Li, Pang Huancheng, et al. Returning granulated straw for accelerating decomposition rate and improving soil fertility[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 177-183. (in Chinese with English abstract)
[26] 武际,郭熙盛,鲁剑巍,等. 不同水稻栽培模式下小麦秸秆腐解特征及对土壤生物学特性和养分状况的影响[J]. 生态学报,2013,33(2):565-575.
Wu Ji, Guo Xisheng, Lu Jianwei, et al. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation[J]. Ecology, 2013, 33(2) 565-575. (in Chinese with English abstract)
[27] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
[28] 王玉万,徐文玉. 木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J]. 微生物学通报,1987(2):81-84.
Wang Yuwan, Xu Wenyu. Quantitative analysis program of hemicellulose, cellulose and lignin in lignocellulose solid substrate fermentation[J]. Microbiology China, 1987(2): 81-84. (in Chinese with English abstract)
[29] 江培福,雷廷武,刘晓辉,等. 用毛细吸渗原理快速测量土壤田间持水量的研究[J]. 农业工程学报,2006,22(7):1-5.
Jiang Peifu, Lei Tingwu, Liu Xiaohui, et al. Principles and experimental verification of capillary suction method for fast measurement of field capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 1-5. (in Chinese with English abstract)
[30] Olson J S, Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 465-472.
[31] 刘佳,张杰,秦文婧,等. 红壤旱地毛叶苕子不同翻压量下腐解及养分释放特征[J]. 草业学报,2016,25(10):66-76.
Liu Jia, Zhang Jie, Qin Wenjing, et al. Decomposition and nutrient release characteristics of differentgreen manure applications in red soil uplands of South China[J]. Acta Prataculturae Sinica, 2016 25(10): 66-76. (in Chinese with English abstract)
[32] 张成兰,刘春增,李本银,等. 不同施肥条件下毛叶苕子的腐解及养分释放特征[J]. 应用生态学报,2019,30(7):2275-2283.
Zhang Chenglan, Liu Chunzeng, Li Benyin, et al. The characteristics of decomposition and nutrient release ofunder different fertilization treatments[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2275-2283. (in Chinese with English abstract)
[33] 王景,陈曦,魏俊岭. 水稻秸秆和玉米秸秆在好气和厌氧条件下的腐解规律[J]. 农业资源与环境学报,2017,34(1):59-65.
Wang Jing, Chen Xi, Wei Junling. Decomposition of rice straw and corn straw under aerobic and anaerobic Conditions[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 59-65. (in Chinese with English abstract)
[34] 龚振平,邓乃榛,宋秋来,等. 基于长期定位试验的松嫩平原还田玉米秸秆腐解特征研究[J]. 农业工程学报,2018,34(8):139-145.
Gong Zhenping, Deng Naizhen, Song Qiulai, et al. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 139-145. (in Chinese with English abstract)
[35] 姚云柯,周卫,孙建光,等. 田间条件下不同促腐菌对水稻秸秆腐解及胞外酶活性的影响[J]. 植物营养与肥料学报,2020,26(11):2070-2080.
Yao Yunke, Zhou Wei, Sun Jianguang, et al. Effects of different straw-decomposition inoculants on increasing the activities of extracellular enzymes and decomposition of rice straw buried into soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2070-2080. (in Chinese with English abstract)
[36] Guo Teng F, Zhang Q, Chao A, et al. Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system[J]. Scientific Reports, 2018, 8(1): 1847-1859.
[37] 潘剑玲,代万安,尚占环,等. 秸秆还田对土壤有机质和氮源有效性影响及机制研究进展[J]. 中国生态农业学报,2013,21(5):526-535.
Pan Jianling, Dai Wanan, Shang Zhanhuan, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. China Journal of Eco-Agriculture, 2013, 21(5): 526-535. (in Chinese with English abstract)
[38] 武际,郭熙盛,王允青,等. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征[J]. 中国农业科学,2011,44(16):3351-3360.
Wu Ji, Guo Xisheng, Wang Yunqing, et al. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models[J]. Scientia Agricultura Sinica, 2011, 44(16): 272-276. (in Chinese with English abstract)
[39] 周国朋. 紫云英-稻草共同还田的协同效应及机制[D]. 北京:中国农业科学院,2020.
Zhou Guopeng. The Synergistic Effects and Mechanism of Co-incorporating Chinese Milk Vetch () and Rice () Straw[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)
[40] 郑文魁,卢永健,邓晓阳,等. 控释氮肥对玉米秸秆腐解及潮土有机碳组分的影响[J]. 水土保持学报,2020,34(5):292-298.
Zheng Wenkui, Lu Yongjian, Deng Xiaoyang, et al. Effects of controlled-release nitrogen fertilizer on decomposition of maize straw and organic carbon fractions in fluvo-aquic soil[J]. Journal of Soil and Water Conservation. 2020, 34(5): 292-298. (in Chinese with English abstract)
[41] 张丹,付斌,胡万里,等. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报,2017,33(9):133-140.
Zhang Dan, Fu Bin, Hu Wanli, et al. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 133-140. (in Chinese with English abstract)
[42] 雷之萌. 不同形态氮源的氮肥对稻秆的促腐效应[D]. 合肥:安徽农业大学,2017.
Lei Zhimeng. Nitrogen Fertilizer with Different Nitrogen forms Promoting the Decomposition of Straw[D]. Hefei: Anhui Agricultural University, 2017. (in Chinese with English abstract)
[43] Simujide H, Aorigele C, Wang C J, et al. Evaluation of calcium cyanamide addition during co-composting of manure and maize straw in a forced-aeration static-pile system[J]. Journal of Environmental Health Science and Engineering, 2016, 14(1)14-18.
[44] 蒋梦蝶,何志龙,孙赟,等. 尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响[J]. 农业环境科学学报,2018,37(1):196-204.
Jiang Mengdie, He Zhilong, Sun Yun, et al. The effect of wheat-straw derived biochar on the soil pH and emissions of CO2and CH4from tea garden soil[J]. Journal of Agro-Environment Science, 2018, 37(1): 196-204. (in Chinese with English abstract)
[45] 高嵩涓,周国朋,曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报,2020,26(12):2115-2126.
Gao Songjuan, Zhou Guopeng, Cao Weidong. Effects of milk vetch () as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115-2126. (in Chinese with English abstract)
[46] Hu A Y, Yu Z Y, Liu X H, et al. The effects of irrigation and fertilization on the migration and transformation processes of main chemical components in the soil profile[J]. Environmental Geochemistry and Health, 2019, 41(6): 2631-2648.
[47] Kazuki Suzuki, Naoya Kashiwa, Kota Nomura, et al. Impacts of application of calcium cyanamide and the consequent increase in soil pH on N2O emissions and soil bacterial community compositions[J]. Biology and Fertility of Soils, 2020, 57: 269-279.
[48] Liao P, Shan H, Gestel V N C, et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-ropping system[J]. Field Crops Research, 2018, 216: 217-224.
[49] 罗立娜,丁清华,公维佳,等. 尿素氨化预处理改善稻秸干法厌氧发酵特性[J]. 农业工程学报,2015,31(19):234-239.
Luo Lina, Ding Qinghua, Gong Weijia, et al. Urea ammoniated pretreatment improving dry anaerobic fermentation characteristics of rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 234-239. (in Chinese with English abstract)
[50] 席北斗,刘鸿亮,白庆中,等. 堆肥中纤维素和木质素的生物降解研究现状[J]. 环境污染治理技术与设备,2002(3):19-23.
Xi Beidou, Liu Hongliang, Bai Qingzhong, et al. Study on current status of lignin and cellulose biodegradation in composting process[J]. Technique and Equipment for Environment Pollution Control, 2002(3): 19-23. (in Chinese with English abstract)
[51] 杨增玲,梅佳琪,曹聪,等. 基于红外光谱的不同农作物秸秆磨木木质素差异表征[J]. 农业工程学报,2018,34(19):219-224.
Yang Zengling, Mei Jiaqi, Cao Cong, et al. Traits of milled wood lignin isolated from different crop straw based on FT-IR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 219-224. (in Chinese with English abstract)
[52] 张学鹏,宁堂原,杨燕,等. 不同浓度石灰氮对黄瓜连作土壤微生物生物量及酶活性的影响[J]. 应用生态学报,2015,26(10):3073-3082.
Zhang Xuepeng, Ning Tangyuan, Yang Yan, et al. Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3073-3082. (in Chinese with English abstract)
Effects of adding different exogenous nitrogen on rice straw decomposition and nutrient release
Mai Yichen1,2, Bu Rongyan2, Han Shang2, Lei Zhimeng1,3, Li Min2, Wang Hui2, Cheng Wenlong2, Tang Shan2, Wu Ji2※, Zhu Lin1
(1.,,230036,;2.,/,230031,;3.,271601,)
A straw returning technique has been one of the most important measures for the comprehensive utilization of straw in ecological agriculture in the world. The soil fertility can also be improved to protect the environment during the sustainable development of farmland. The amount of straw returning is ever increasing in China in recent years. It is necessary to optimize the straw returning for higher efficiency during resource utilization. The nitrogen content can also be added to adjust the carbon-nitrogen ratio of straw for the rapid decomposition, thus improving the nutrient release rate with the better straw returning. In this study, different exogenous nitrogen sources were added to determine the dynamic changes of rice straw during decomposition. The suitable nitrogen source was also screened. Indoor cultivation was adopted at the constant humidity. Four treatments were set, including the control (CK), the application of urea (PU), the application of urea ammonium nitrate (UAN), and the application of lime nitrogen (CaCN2). The results showed that the highest decomposition rate of rice straw was achieved at 0-5 d with 0.39-0.47 g/d, followed by the 5-30 d with 0.12-0.16 g/d, and the lowest was 0.045-0.050 g/d during 30-150 d. The addition of exogenous nitrogen significantly increased the cumulative decomposition rate of rice straw (<0.05), compared with the CK. There was no significant difference in decomposition rate, whereas, a relatively significant difference was found in the decomposition characteristics of rice straw at different stages among the three treatments of exogenous nitrogen. Specifically, the decomposition rates of rice straw in the PU, UAN, and CaCN2treatments in 0-30 d were 0.076, 0.077, and 0.078 g/d, respectively. The decomposition rates of the PU, UAN, and CaCN2treatments at 30-150 d were 0.046, 0.046, and 0.050 g/d, respectively. The cellulose, hemicellulose, and lignin were attributed to the decomposition rates of rice straw at different stages. The maximum decomposition rates of cellulose treated with the PU, UAN, and CaCN2were 13.23%, 10.65%, and 11.29% higher than those with the CK, respectively. The PU treatment also presented the best promoting effect on cellulose decomposition. The decomposition rates of hemicellulose treated with the PU, UAN, and CaCN2were 6.40%, 5.89%, and 4.74% higher than those with the CK, respectively. The PU and UAN presented the best promoting effects on hemicellulose decomposition. The PU and UAN treatments contributed the most to improving the early decomposition rate of rice straw. The maximum decomposition rates of lignin treated with the PU, UAN, and CaCN2were higher than those with the CK, respectively. The CaCN2treatment presented the best promoting effect on the lignin decomposition, thus improving the decomposition rate of rice straw in the late stage. Consequently, the different types of exogenous nitrogen can be combined to achieve the best decomposition. This finding can provide a theoretical basis to improve the nutrient utilization of rice straw for the feasibility and sustainability of straw returning.
urea; decomposition; rice straw; urea ammonium nitrate; lime nitrogen
麦逸辰,卜容燕,韩上,等. 添加不同外源氮对水稻秸秆腐解和养分释放的影响[J]. 农业工程学报,2021,37(22):210-219.doi:10.11975/j.issn.1002-6819.2021.22.024 http://www.tcsae.org
Mai Yichen, Bu Rongyan, Han Shang, et al. Effects of adding different exogenous nitrogen on rice straw decomposition and nutrient release[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 210-219. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.22.024 http://www.tcsae.org
2021-07-26
2021-10-28
安徽省自然科学基金项目(2008085QD165);安徽省科技重大专项(202003a06020008);财政部和农业农村部:现代农业产业技术体系建设专项资金资助(绿肥,CARS-22-Z-05)
麦逸辰,研究方向为有机养分资源利用。Email:18856962825@163.com
武际,研究员,研究方向为土壤培肥和作物高效施肥技术。Email:wuji338@163.com
10.11975/j.issn.1002-6819.2021.22.024
S38
A
1002-6819(2021)-22-0210-10