APP下载

基于储层特性的碳酸盐岩缝洞型油藏开发方式

2021-01-26袁士宝刘文强蒋海岩赵黎明

油气地质与采收率 2021年1期
关键词:洞体开发方式缝洞

袁士宝,刘文强,蒋海岩,赵黎明,王 姣

(1.西安石油大学石油工程学院,陕西西安 710065;2.陕西省油气田特种增产技术重点实验室,陕西西安 710065;3.陕西延长石油(集团)研究院,陕西西安 710075;4.中国石化西北油田分公司采油一厂,新疆乌鲁木齐 830011)

碳酸盐岩缝洞型油藏的岩溶洞穴系统和岩溶缝洞系统十分发育,储集空间分布复杂,随机性极强。其裂缝和溶洞埋藏深,发育形态多样、分布错综复杂、大小不均,造成了横、纵向的非均质性极强[1]。与常规油气藏不同,碳酸盐岩缝洞型油气藏(群)具有复杂的储集空间与成藏演化过程,普遍具有钻井成功率低、高效井比例低、开井率低、平均单井产量低以及油井寿命短等特征。因此,此类油藏的开发技术已经成为研究的重点和难点之一[2-3]。由于碳酸盐岩缝洞型油气藏的非均质性和空间多尺度性以及流体运动规律的复杂性,使得这类油气藏的勘探开发非常困难[4-7]。

缝洞体分布的描述是一大难题,为此学者们不断提升缝洞体描述的准确程度。鲁新便等提出以缝洞体为基础的缝洞型油藏“5 步法”建模技术[8],GULBRANSRN 等提出了多尺度混合有限元方法模拟缝洞型油藏[9],在张宪国等理论基础上[10],刘航宇等基于分形特征定量评价了碳酸盐岩油藏的孔隙结构[11],为该类油藏的描述提供了多角度的理论基础。HIKARU 等研究了非均质碳酸盐岩的渗透率与孔隙度的关系,并建立了数学模型,得出仅有一部分孔隙有助于液体流动的结论[12]。至今,碳酸盐岩缝洞型油藏的数值模拟已具备较好的可行性,成为研究该类油藏开发方式的重要手段之一。在开发方式上,中外大多数碳酸盐岩缝洞型油藏均是衰竭式开发,如注水、注气、热采或水平井开发等[1,13]。一般情况下,碳酸盐岩缝洞型油藏的基质渗透率极低,不利于油气渗流[14],因此采用常规注采井网开发产量低,经济效益不佳。碳酸盐岩缝洞型油藏的能量补充方式,要结合缝洞体分布规律来优选,中外学者先后证实了注水开发在该类油藏的可行性[15-17],论证了不同连通情况下的缝洞油藏注采模式。但未提出一套较为系统的碳酸盐岩缝洞型油藏开发方式优选流程。碳酸盐岩缝洞型油藏的储层构型,决定了各类井型的应力适用范围[18],而缝洞体的尺度规模直接决定了其开发价值。对该类油藏应该考虑储层各项特性来制定开发方案。为此,笔者以A区块典型碳酸盐岩非均质油藏为例,利用数值模拟与生产实践相结合的手段,基于断层与缝洞体发育关系和经济效益论证水平井的适用性,基于基质渗透率探讨定点开发的适用区间,基于缝洞体间连通性提出不同油藏条件下的开发方式优选流程。

图1 A区块属性模型Fig.1 Geological model of Block A

1 地质建模及井型适用性

碳酸盐岩缝洞型油藏的储层构型及缝洞体单元规模,决定了水平井的适用范围和经济效益。通过建立地质模型,充分描述储层特征,依据断层与缝洞体发育关系考虑水平井适用性。

1.1 地质建模

缝洞型油藏由于探井少、开采年限短,缺乏生产数据,导致建模困难。预测缝洞体单元的规模和油水分布情况,要求比一般的砂岩、油页岩油藏更为精细准确,故运用1 种恰当的建模方法可以提高预测缝洞体单元分布情况的精度。A区块面积约为28 km²,西北—东南方向延伸约为7 km,西南—东北方向延伸约为4 km,储层埋深为6 032 m,属于奥陶系C 组,地表海拔高度为1 040~1 070 m,断层复杂,产少量天然气,含极少量底水,可近似认为是黑油油藏,平均含油饱和度达0.8 以上。运用Petrel 软件克里金插值法提取并建立属性模型,序贯高斯模拟方法构建构造模型,蚂蚁追踪算法描述裂缝。

由图1 可以看出,A 区块缝洞体孔隙度为13%~25%,渗透率达100 mD,基质孔隙度、渗透率均明显比缝洞体低,区块整体西侧缝洞体孔隙度、渗透率高于东侧,且多为单独缝洞单元,少有相互连通的缝洞体群;探井Well-1—Well-6 中,仅探井Well-2位处A 区块西边主断层所过缝洞体群;大多数缝洞单元的规模大,直径达500 m,高度达110 m;小规模的直径为160 m,高度为90 m。根据油藏空间形态将碳酸盐岩油藏划分为3 种类型:洞穴-裂缝孔洞型、洞穴型和裂缝-孔洞型[19]。总的来说,A 区块油藏缝洞体和基质的孔隙度差异明显,缝洞体单元大小不一、分布无规则,根据连通性分为连通缝洞体和单独缝洞单元,属于上述类型中的洞穴-裂缝孔洞型。

1.2 水平井适用性

水平井作为油藏开发的一种重要井型,在碳酸盐岩缝洞型油藏依然适用。断层走向决定着地层最大主应力的方向,限制了水平井轨迹走向,对水平井的应用有2 点要求:①储层构型决定了水平井的钻井成功率,据统计,1 口水平井的造价是1 口直井的1.5~2 倍。一般要求水平井井身结构要垂直于地层最大主应力方向,减少钻井难度和费用[20]。②碳酸盐岩缝洞型油藏由于缝洞体规模大小不一,储层中缝洞体单元分布无规则,其分布规律和规模直接决定了水平井的生产效益。因此,断层与缝洞体发育关系和缝洞体单元规模决定了开发井型。

考虑经济原因,在缝洞体间隔距离较大,同时单独缝洞单元体积较大的缝洞体上推荐使用直井开发;在间隔距离较小,各单独缝洞单元有一定体积的情况下,推荐使用水平井。A 区块储层最小水平应力方向为西北—东南向,从储层整体看来,缝洞体较多且相对独立,油气藏纵向上单一油气层发育,最大厚度为140 m,最小仅有28 m。基于已有的水平井开发经验,水平井开采的油层厚度应大于6 m。

如表1 所示,部署Well-5 和Well-9 共2 口水平井,这是由于A 区块在Well-5井和Well-9井位置附近有较小缝洞体单元,其应力条件符合水平井部署要求。其中Well-5 井串联2 个距离约为350 m 且规模大约为长度为250 m、高度为100 m 的缝洞体单元,Well-9 井串联3 个规模中等的单元体。探井Well-2 处于连通性好的缝洞体群处,其渗透性比单独缝洞单元好,在缝洞体群处采用成本较低的直井生产,其他的单独缝洞单元处,采用单直井控制单洞的方式生产。

2 基于储层基质渗透率的开发方式

缝洞体的填充程度决定井孔位置,而基质渗透率可以反映不同缝洞体单元之间的相互影响程度,基质渗透率越低,缝洞单元间的相互影响越小,这也导致了各缝洞单元具有压力体系、流体性质等均不同的特性。对于砂岩油藏,一般情况下多用注采井组来控制整个区块油藏的开采。相对于常规的井网布置方式,缝洞型碳酸盐岩储层由于基质渗透率低,而填充或者半填充的缝洞体处的孔隙度、渗透率均较高,故在碳酸盐岩缝洞型油藏的油藏工程设计时,依据缝洞体单元的分布情况及井控半径,采用单井控制单洞、水平井串联多洞的基本布井思路,即为定点开发。A 区块油藏内原油储量约为3 200×104t,平均基质孔隙度不到3%,平均基质渗透率为0.67 mD,属于特低渗透油藏。图1可清晰看出有些缝洞体孔隙度大,连通性好,更多的则是分布较散的单独缝洞单元。基于基质渗透率分析定点开发的适用性,在油藏数值模拟软件CMG 中,设计A 区块井位分布。由图2 可以看出,A 区块油藏发育多条断层,2 条主断层均为东北—西南向,其他断层多与2条主断层相连接且被阻挡。图2a为定点开发井位,10 口生产井分布于各较大缝洞体单元;图2b 为面积井网开发井位,为排状井网,2 排生产井,1 排注水井,生产井井间距约为1 000 m,各注水井井间距约为1 000 m,共计生产井10 口,注水井3口。2 个模型中,规定所有注水井日注水量为200 m³/d,所有生产井日产液量为100 m³/d。一般情况下,碳酸盐岩缝洞型油藏基质渗透率为0.05~10 mD,在此范围内选取12 组不同的渗透率,以开发20 a 后的最终采收率为依据,论证定点开发适用的渗透率范围。

表1 缝洞型油藏井型适应性对比Table1 Applicability comparison of well types in fracture-cavity reservoir

图2 不同开发方式下的井位分布Fig.2 Well location distribution in different development modes

从不同基质渗透率下2种开发方式的采收率曲线(图3)可以看出,对于碳酸盐岩缝洞型油藏,基质渗透性越好,定点开发适用性越差,基质渗透率低于某一值时(A 区块为2.9 mD),适合选用定点开发的布井方式。若基质渗透率相对较高的部分占绝大多数,则更适合面积井网开发,或在基质渗透率相对较高的集中区域,采用面积井网开发,而低渗透基质处则采用缝洞体的定点开发,这2 种方式的结合,可以得到更好的采收效果。由于A 区块储层基质渗透率为0.03~5.89 mD,渗透率为0.1~1.3 mD,占整个储层基质的85%以上。因此,A 区块更适合定点开发。

图3 不同基质渗透率下2种布井方式的最终采收率Fig.3 Ultimate recoveries for two types of well location with different matrix permeability

3 基于缝洞体连通性的开发方式

3.1 连通缝洞体的注水开发可行性

油藏开发方式大致分为衰竭式开发和保持压力开发2 种。缝洞型油藏的衰竭式开采,其目的在于节约成本,这是由于这类油藏一般位于深层,注水井的成本非常高。碳酸盐岩缝洞型油藏注水开发过程易出现见水时间上的极大差异,有的井见水过早,有的则见水缓慢,若缝洞单元垂向分布描述及油水界面计算较为准确,可使井孔位置更为准确,有效延缓见水速度。若可以准确描述缝洞体垂向分布,注水开发连通性好的缝洞体群或大型单独缝洞型油藏是有必要的。缝洞型油藏的注采井组首先应以储集体间的连通为基础,其次根据缝洞储集体发育和展布特征、裂缝连通状况及油水分布模式所共同形成的缝洞空间立体结构进行配置,形成不同的注采井组关系,最大程度地提高注入水的驱替效率[21]。结合注水成本进行论证,1 口注水井的成本大约为0.65 亿元。在A 区块中,采用2 种不同开发方案,对比注水开发和衰竭式开发的采收效果。注水开发方案中,探井Well-2 附近储层有2 处为连通缝洞体,2 口注水井分别位于Well-2 井所处连通缝洞体的两端,1 口水平井位于Well-5 井所处连通缝洞体,总计3口注水井,注采比为1∶1;与注水开发方案相比,衰竭式开发方案模型中将实际的3口注水井去除,生产井保持数量一致。

图4 A区块注水开发和衰竭式开发采收率Fig.4 Recoveries for water-flooding development and depletion development in Block A

由图4 可以看出,开发20 a 后,有3 口注水井的注水开发的采收率为17.97%,而衰竭式开发的采收率仅为13.19%。由图5 可以看出,注水开发中注水井附近储层的最终储量丰度明显比衰竭式开发同部位低,这说明连通性好的缝洞体群和大缝洞体采用注水开发能够有效提高原油采收率。故这种考虑了经济因素的早期衰竭式开发单独缝洞单元、早期注水开发连通缝洞体的选择性注水开发方式,适合于以A 区块为典型实例的缝洞体储层的定点开发。

图5 注水开发和衰竭式开发最终储量丰度Fig.5 Ultimate reserve abundances of water-flooding development and depletion development

3.2 单独缝洞单元开发产量递减规律及能量补充方式

3.2.1 单独缝洞单元产量递减规律

对于典型的缝洞体储层中的单独缝洞单元,产量递减曲线大致分为“几”字型、“Λ”字型和波动型递减3 种曲线形态[4],且每种曲线形态代表了缝洞单元的规模或能量大小,进而可以为驱油工艺选择良好时机和进行产量预测。

由图6 可以看出,虽A 区块的产量递减曲线前端(OB 段)为“Λ”字型,但整条曲线中存在明显的两段式递减,且在前期(AC 段)递减率较大,平均年递减率为27%,之后递减率较为缓和,平均年递减率为15%。由于A区块碳酸盐岩缝洞型储层内部分缝洞体单元的产量规律一部分符合“Λ”字型递减规律,另一部分(BD 段)符合半“几”字型递减规律,因此,A 区块总体呈现了两段式产量递减。由图7 可以看出,Well-1 井的产量递减曲线也表现出明显的两段式递减规律,符合Well-1 井所控缝洞体单元储量中等、能量一般的特征。因此,在类似的碳酸盐岩单独缝洞体后续开发过程中,还需具体分析其递减规律来优选能量补充方式。

图6 A区块产量递减曲线Fig.6 Production-decline curve of Block A

图7 Well-1井衰竭式开发产量递减曲线Fig.7 Production-decline curve of Well-1 in depletion development

3.2.2 单独缝洞单元定点开发能量补充方式

对于碳酸盐岩缝洞体储层,在衰竭式开发产量递减的趋势下,有2 种方式能够有效补充单独缝洞单元处的地层能量,一是单井注水替油[22-23],文献[4]中表明注水替油为生产井在生产一定时间后关停,并以此生产井向储层内注水补充能量,经重力分异作用将油浮于缝洞体上部的驱油工艺。二是注气吞吐,将生产的天然气回注入井中混相驱油,或注入N2形成气顶可以有效动用“阁楼油”,甚至同时注入天然气和N2来提高原油采收率[24]。2种方式的选择,取决于当地矿场条件,若无气源,只需考虑注水替油;若有气源,可以结合数值模拟对比2种能量补充方式并做出优选。A 区块储层具有溶解气,区块平均天然气占比为0.76,生产气油比为144,可知该区块有充足的天然气量以回注驱油,由此分别建立A 区块注水替油和单井注气吞吐数值模拟模型,开发参数见表2。

表2 2种能量补充方式的数值模拟模型参数选取Table2 Selection of numerical simulation parameters for two energy supplement modes

数值模拟结果表明,A 区块的注水开发结合单井注水替油第1 周期的最终采收率为20.71%,注水开发结合单井注气吞吐最终采收率为20.98%。由图8 可知,注气吞吐和注水替油均可在一定期限内提升Well-1 井的日产油量,说明这2 种方式均是有效的。由于注水替油的成本较低,且A 区块注水替油的驱油效果比注气吞吐略高,因此A 区块最终选用注水开发结合单井注水替油的开发方式。

图8 3种方案下Well-1井产量递减曲线Fig.8 Production-decline curve of Well-1 in three development modes

由图9 可以看出,Well-1 井的衰竭式开发最终含油饱和度约为0.79,而经过1 个周期的注水替油,其最终含油饱和度为0.76,分布情况符合该处缝洞体单元的构造特征。这说明1次注水替油的效果远不及注水开发,想要达到好的开发效果并保证经济效益,需要不定期分析产量递减规律,选择恰当的注水替油时机进行多周期注水替油。

图9 Well-1井衰竭式开发和注水替油开发后含油饱和度Fig.9 Ultimate oil saturation of Well-1 in modes of water-flooding and depletion development

4 开发方式优选流程

将开发方式优选方法推广,提出以缝洞体规模、基质渗透率及缝洞体连通性依次为主要依据来优选开发方式的思想,并总结出一套缝洞型油藏的开发方式优选流程(图10)。

图10 缝洞型油藏开发方式优选流程Fig.10 Optimization process for development modes of fracture-cavity carbonate reservoirs

依照A 区块的开发方式选择方法,对于该类碳酸盐岩缝洞型油藏开发方案的制定,推荐以基质渗透率为依据选择布井方式,以缝洞体的连通性为基准讨论后续驱油措施。建议根据不同的储集类型(如风化壳、古暗河、断溶体等),设计灵活而有针对性的井网形式,通过多指标的综合比对,优化出不同储集类型的井网形式。首先充分分析特定的缝洞型油藏特征,考察基质的渗透性是否达到可以采用面积井网开发;根据缝洞体的规模和空间分布位置优选优化井型,论证水平井的可行性;如果基质渗透率低,井型优化完成后,分析缝洞体连通性,连通性强的缝洞体群需要注水开发,而连通性差的单独缝洞单元可以考虑多周期的注水替油或注气吞吐开发。

5 结论

通过以A区块储层为典型实例的碳酸盐岩缝洞型油藏的数值模拟分析,对其开发方式有几点认识:①水平井的应用,应考虑具体区块缝洞体单元所处地层构造情况和其成藏规模大小,A 区块有2处水平井的应用得到较好收益。②通过基质渗透率来选择定点开发或面积井网开发,可经数值模拟计算具体碳酸盐岩缝洞型储层的定点开发适用区间,根据储层渗透率分布情况,来优选井位布置方法。基质渗透率低,如在A 区块中基质渗透率低于2.9 mD,应对缝洞体单元定点开发;渗透率相对高处,可以应用面积井网开发来提高整个储层的采收效果。③对于连通性好的缝洞体单元,注水开发是有效的;对于单独缝洞单元,应根据其天然能量大小选择补充能量时机,同时根据开发效果和经济效益优选补充能量的方法(注水替油或注气吞吐)。④基于碳酸盐岩缝洞型油藏储层特性的研究,总结了有效的开发方式优选流程,为该类油藏开发方式的选择提供参考。

猜你喜欢

洞体开发方式缝洞
顺北地区断控缝洞体测井响应特征和类型识别方法
混凝土预制板拼装技术在大型气动声学风洞建设中的应用
碳酸盐岩缝洞储集体分尺度量化表征
哈拉哈塘奥陶系缝洞型成岩圈闭及其成因
数字海洋的开发方式选择和研究
杀牛冲水库堵洞体及溢洪道建筑物设计计算
车身开发中的尺寸工程技术之我见
缅甸水资源开发方式及应注意的问题
缝洞型介质结构对非混相气驱油采收率的影响
塔河油田S80单元缝洞体分布规律及发育模式