APP下载

樱桃生理变化及保鲜机理研究进展

2021-01-19赵悦菡侯召华纪海鹏董成虎张娜郭红莲陈存坤

食品研究与开发 2021年23期
关键词:保鲜樱桃含量

赵悦菡,侯召华,纪海鹏,董成虎,张娜,郭红莲,陈存坤*

(1.天津科技大学 食品科学与工程学院,天津 300457;2.齐鲁工业大学(山东省科学院)食品科学与工程学院,山东 济南 250353;3.天津市农业科学院 农产品保鲜与加工技术研究所(国家农产品保鲜工程技术研究中心(天津)),农业农村部农产品贮藏保鲜重点实验室,天津市农产品采后生理与贮藏保鲜重点实验室,天津 300384)

樱桃树(Prunus avium L.)是我国北方落叶果树中上市最早的果树,其果实外观鲜艳、味道鲜美、营养丰富,为最受欢迎的水果之一,是众多生物活性分子(如酚类、黄酮类、花青素、血清素和褪黑素)的极佳来源,具有抗菌、抗氧化、抗糖尿病、抗癌以及保护神经等功效[1-3]。樱桃因其风味佳和营养丰富而受到欢迎,随着人们对樱桃营养价值认识的提高,樱桃果实的市场需求和消耗量迅速增大[4]。樱桃为非呼吸跃变型果实,呼吸活性高、易快速软化且容易受到机械损伤。此外,樱桃果实皮薄、果肉柔软多汁,其采收期正值高温、多雨时节,采后樱桃生理状态仍然活跃,导致樱桃果实极易腐烂,带来了巨大损失[5-6]。本文针对樱桃的采后生理变化、变质机理及贮藏保鲜技术进行综述,并对樱桃保鲜技术的研究方向进行展望,以期为樱桃的保鲜研究及应用提供理论依据。

1 樱桃采后的生理变化

1.1 果实失水软化

果实质地是影响果实品质的一项重要指标,果实失水软化是多数果实从成熟到衰老的必然生理过程[7]。果肉硬度下降是果实失水软化的最直观表现,如桃[8]、猕猴桃[9]、梨[10]等,软化是水果成熟衰老过程中不可或缺的一部分,是许多水果可食用性和适口性的关键促成因素。然而,软化也会增加物理损伤和采后病原菌感染的敏感性,这可能会限制果实的运输、贮藏时间和采后货架期[11]。

果实软化很大程度上受到细胞壁成分结构和组成的重大改变的影响,导致细胞壁间黏附丧失、细胞壁松动和解体[12]。植物的原生细胞壁通常是由纤维素微原纤维嵌在半纤维素和果胶聚合物基质中组成,软化过程中,果胶和半纤维素会发生溶解和解聚[13-14]。成熟过程中细胞壁的结构变化主要是果胶、半纤维素、纤维素以及细胞壁修饰酶的协同作用[15],主要包括聚半乳糖醛酸酶、果胶甲基酯酶、纤维素酶、木聚糖酶、β-半乳糖苷酶、α-阿拉伯呋喃苷酶和蛋白酶[16]。樱桃果实失水软化主要是由于果实果胶物质的降解和果胶-纤维素-半纤维素总体结构状态遭到破坏。

1.2 呼吸强度改变

呼吸速率是衡量果实呼吸强度的重要指标,同时关系到果实采后营养品质变化以及衰老等情况[17]。樱桃是非呼吸跃变型果实,采后在5℃呼吸强度为10mgCO2/(kg·h)~20 mg CO2/(kg·h),无明显呼吸高峰[18]。呼吸强度受温度影响较大,温度系数(Q10)为2.5,温度升高10℃,呼吸强度增加了一倍多[19]。但也有研究表明,樱桃采后1 d~4 d内出现呼吸高峰,推测樱桃并非传统意义上的非呼吸跃变型果实,可能属于呼吸末期上升型,也称为晚峰型[20]。早熟品种果实的呼吸强度高于晚熟品种,因此晚熟品种较早熟品种更耐贮藏[21]。晚熟樱桃的呼吸强度变化受成熟度影响,成熟度高则呼吸强度先下降后上升,成熟度低则相反[22]。贮藏过程中有效控制呼吸强度能改善贮藏品质和货架期。

1.3 褐变

褐变分为酶促褐变和非酶促褐变,水果保鲜主要发生酶促褐变,酶促褐变是反映果实老化、生理衰退的重要特征之一。多酚氧化酶(polyphenol oxidase,PPO)一直被公认为是引起果蔬酶促褐变的主要酶类[23]。PPO是一类含铜的氧化还原酶,可把一元酚和二元酚作底物,在有氧条件下,PPO将邻位酚氧化为醌,醌快速聚合成为褐色素而引起组织褐变[24]。研究表明,樱桃果肉在4℃贮藏时褐变度明显低于在室温(25℃)条件下贮藏,且褐变不明显;当温度上升到10℃时,PPO活性显著增加,在10℃~25℃之间维持在较高水平,此后逐渐降低。结果表明,樱桃果肉PPO活性常温时较强,低温可显著抑制酶促褐变。此外,樱桃PPO在pH3.0~5.0时活性较高,pH4.0时达到峰值,pH值大于8.0时PPO活性抑制效果明显[25],樱桃PPO最适酸碱性为酸性,贮藏加工过程中可利用pH值防止其褐变。

1.4 果实香气变化

果实成熟时伴有其特有香气,樱桃果香随着成熟度的上升而浓郁。Mattheis等[26]采用动态顶空固相微萃取结合气质联用(headspace solid phase microextractiongas chromatography-mass spectrometry,HS-SPME-GC/MS)从樱桃果实中检出28种香气成分,其中2-丙醇、乙醇、辛醛、苯甲醛和己醛是其主要香气成分。张序等[27]采用SPME-GC/MS研究“红灯”甜樱桃发育进程香气成分的组成与变化,测得己醛、(E)-2-己烯醛、苯甲醛、(E)-2-己烯醇、乙酸乙酯和己酸乙酯是“红灯”甜樱桃成熟果实的主要香气成分,香气成分在着色期大量合成,并且多数在商熟期达到高峰。贮藏期间,果实呼吸作用消耗果实营养物质,随时间延长,果实由成熟走向衰老,最终果实腐烂,产生酸臭气味。

1.5 营养物质变化

樱桃果实含有丰富的营养物质,包括维生素、糖和酸等[28],这些营养物质的含量和变化与果实的成熟与衰老进程密切相关。随贮藏时间延长,果实的营养物质部分用于呼吸作用,可溶性固形物和可滴定酸呈现下降趋势,造成果实营养物质的流失。许多研究表明,这些化合物的含量取决于一系列收获前和收获后的因素,如品种、成熟阶段、生长条件、收获前和收获后处理[29]。樱桃在不同温度环境下贮藏,VC含量均呈先上升后下降趋势,张鹏等[30]在冷藏条件下将甜樱桃贮藏60 d,其VC含量先上升再下降。樱桃果实采摘后仍然保持一定的生理活动功能,营养物质的氧化分解速度高于合成速度,降低分解代谢速度能延长贮藏期。

1.6 生物活性成分变化

樱桃果实含有丰富的多糖、酚类化合物、有机酸和黄酮类化合物,贮藏过程中花色苷和酚酸等活性成分含量呈下降趋势[31]。甜樱桃中鉴定出5种花色苷[32](矢车菊素3-葡萄糖苷、矢车菊素3-芸香苷、芍药苷3-葡萄糖苷、天竺葵素3-芸香苷和芍药苷3-芸香苷)和多种酚酸(新绿原酸、绿原酸、对香豆酰基奎尼酸等)[33]。研究表明,成熟果实中原花青素含量较高,但随贮藏时间延长,花青素和酚类化合物含量均呈现下降趋势[34]。

2 樱桃采后保鲜技术研究进展

2.1 物理保鲜技术

物理保鲜技术是保鲜贮藏领域研究最早,运用最成熟、最广泛的保鲜技术。主要通过3个方面进行控制,一通过调控呼吸作用来控制其衰老进程;二通过减少或抑制致病微生物来控制樱桃腐败;三通过环境相对湿度和细胞间水分的结构化来控制内部水分蒸发。

2.1.1 低温贮藏

控制温度是保持果蔬新鲜,延长货架期最常用的手段。樱桃在低温环境下,部分酶活性受到抑制,相关的生理反应变缓,因此可以起到延长贮藏期的效果[35]。贮藏温度(0±1)℃,湿度85%~90%,樱桃在此温度和湿度范围内,可保存1~1.5个月[36]。低温贮藏能够抑制果实呼吸及乙烯释放量,减少营养物质消耗,平衡果实的生理代谢;且低温贮藏常与其他物理保鲜技术或生化保鲜技术联合使用,保鲜效果更加显著。

2.1.2 气调贮藏

气调贮藏主要是通过改变贮藏空间内的气体成分,抑制细胞壁降解酶的活性,延缓果实衰老,保持营养物质含量,从而抑制果实硬度下降,达到保鲜的效果[37-38]。Serradilla等[39]采用气调来抑制樱桃贮藏期间微生物的生长,发现5%O2+10%CO2和8%O2+10%CO2贮藏15 d后能有效抑制霉菌、嗜温需氧型细菌、嗜冷菌、假单胞菌及酵母菌生长,延迟贮藏腐败,延长货架期。王云香等[2]发现10%高浓度CO2处理能较好地保持樱桃果实的品质及风味,延缓樱桃果实采后衰老。

2.1.3 减压贮藏

减压贮藏又称低压保鲜或真空保鲜,是利用减小密闭贮藏空间大气压力达到水果、蔬菜等产品保鲜的目的,可迅速达到低氧或超低氧的状态,起到与气调贮藏相同或增强的效果[40]。姚瑞祺等[41]发现,减压处理能有效延长拉宾斯大樱桃的贮藏时间,且压力越小贮藏效果越明显;综合感官指标(硬度、褐变指数)和营养物质指标(可溶性固形物及VC含量),拉宾斯大樱桃的减压贮藏期可达49d,其中在20kPa压力下的保鲜效果最好,可溶性固形物含量12.8%,VC含量0.70 mg/100 g,褐变指数2%,硬度3.4 kg/cm2。

2.1.4 热处理保鲜

热处理是一种非化学但有效的保鲜手段,可诱导植物产生热休克蛋白,进而抑制呼吸强度、乙烯合成及叶绿素分解[42]。44℃热空气处理樱桃114 min可抑制因扩展青霉引起的腐败[43]。刘尊英等[44]采用42℃水处理甜樱桃10 min后贮藏,处理组果实感官品质显著高于对照组,且显著抑制了各种酶活性的上升。热处理技术易于操作,成本低廉,但过高的温度和处理时间会影响樱桃的质量,因此不同种类樱桃的温度和处理时间需要进一步研究。

2.1.5 臭氧保鲜

臭氧是一种具有很强抗菌性的物质,因其天然可降解的特性,被人们认为绿色无污染,目前越来越多的运用于果蔬保鲜领域中[45]。张琦等[46]发现臭氧可以明显延缓果实可溶性固形物、可滴定酸、总糖、VC、单宁含量的下降,增强色价含量,从而有效地延缓果实的成熟衰老。目前,臭氧保鲜技术已在葡萄[47]、树莓[48]、草莓[49]等水果上得到验证,但尚未应用于樱桃贮藏保鲜。

2.2 化学保鲜技术

化学保鲜剂主要以抑制或杀死果蔬表面的微生物为主,从而起到防腐保鲜的作用[50]。同时,化学防腐保鲜剂能够有效降低果实采后呼吸强度、延缓果实成熟衰老进程、减缓采后贮藏过程中水分蒸发等效果,并且价格低廉、操作简单,是我国果蔬保鲜常用手段[51]。

2.2.1 1-甲基环丙烯保鲜

1-甲基环丙烯(1-methylcyclopropene,1-MCP)具有无毒、低浓度、高效和易操作等优点而被广泛运用,其主要保鲜机理是控制水果的乙烯生成。SERRADILLA等[52]发现1-MCP处理早熟樱桃,贮藏前7 d硬度稳定,且降低了贮藏末期果实生理紊乱的发生率。1-MCP处理甜樱桃还可显著减缓可滴定酸含量的下降,抑制VC含量下降,降低腐烂率,延缓果实衰老,延长货架期[53]。

2.2.2 二氧化氯保鲜

二氧化氯(ClO2)是一种选择性强的氧化剂,是食品加工业的一种新型非热力杀菌技术,其杀菌机制包括细胞膜失稳、与氨基酸的反应及蛋白质合成中断以及DNA/RNA/蛋白质的氧化作用[54]。ClO2溶液处理能够显著降低水果腐烂率,有效控制失重率,抑制其可溶性固形物、还原糖含量的下降,维持总酚含量和糖酸比的稳定[55]。杨娟侠等[56]发现,ClO2处理能够降低冷藏甜樱桃的呼吸强度,较好地保持果肉硬度,降低腐烂。

2.2.3 钙处理保鲜

钙能够降低果实水分散失,提高果实组织对病原菌的抗性,钙可以调节细胞内各类酶的活性及其代谢;同时,在植物体内起第二信使的作用,能够抑制乙烯的生成,延缓果实的成熟衰老[57]。钙处理有利于降低果实质量损失率和腐烂率,抑制可溶性固形物、硬度、抗坏血酸含量、亮度降低和PPO活力增加,提高过氧化物酶活力和总酚、镁、钾、钠、铁矿质元素含量[58]。Belge等[59]发现钙处理甜樱桃硬度较对照组高,失重率和腐烂率更低,且浸钙处理对果实的色泽也起到稳定和保护作用。

2.2.4 涂膜保鲜

涂膜保鲜使用方便,成本低且无污染,是一项绿色保鲜技术[60]。涂膜是在果实表面人工涂抹特殊薄膜,通过阻碍气调交换、减少水分流失、抑制微生物的侵染、减轻表皮机械损伤等,从而达到保鲜的效果[61]。TOKATLY等[62]研究可食性壳聚糖涂膜对甜樱桃理化和微生物品质影响,结果表明壳聚糖涂层对理化特性和微生物品质有不同影响,尤其是从虾废物中提取的壳聚糖,具有很高的抗菌效果,且可有效地用于延长甜樱桃的货架期。

2.3 生物保鲜技术

水果采后腐烂的主要原因为病原菌侵染,生物保鲜有效成分来自生物自身,具有天然抑菌性、安全性、操作简便等显著优点,故其应用范围不断扩大。其主要是利用拮抗菌或天然提取物来减少病原菌数量或控制病害发展,从而达到保鲜的效果。

2.3.1 微生物保鲜

微生物保鲜方式安全无毒、无污染,拮抗微生物是指在微生物生长繁殖过程中,产生的某种代谢物会与其他微生物发生拮抗作用,从而抑制病原菌的生长,延长果蔬贮藏期[63]。Qin等[64]发现普鲁兰丝孢酵母、劳伦隐球菌、粘红酵母和膜毕赤酵母4种拮抗酵母对甜樱桃上主要采后病原菌(链格孢菌、扩展青霉、灰葡萄孢和匍枝根霉)具有有效抑制作用。张倩[65]发现甜樱桃内生拮抗菌对软腐病菌有抑制作用。王友升等[66]发现酵母拮抗菌C.laurentii在25℃和1℃下均能有效抑制甜樱桃果实褐腐病M.fructicola发生。

2.3.2 天然提取物保鲜

一些植物提取物具有较好的抗氧化性,对病原微生物具有较好的抑制作用,可作为天然食品保鲜剂。Gatto等[67]探究野生食用植物酚提取物防治甜樱桃果实采后病害,发现两种野生植物(Orobanche crenata和Sanguisorba minor)的提取物能够显著抑制甜樱桃果实的腐烂率。韩晓云等[68]研究了核桃青皮乙醇提取液对樱桃的保鲜效果,结果表明60、80、100 mg/L的核桃青皮乙醇提取液浸泡处理樱桃,均可减缓樱桃在贮藏过程中失重率、腐烂率、维生素C含量、可滴定酸含量、可溶性固形物含量和感官评价等各项指标的变化速度,延长樱桃保鲜期,其中80 mg/L的处理保鲜效果最好。

2.4 复合保鲜方法

复合保鲜是将两种或多种保鲜方式科学合理地组合起来,发挥其协同作用的一种手段。静玮[69]将热水喷淋(60℃,20 s)与罗伦隐球酵母菌处理联合使用,能显著抑制樱桃果实的自然发病率,处理效果显著高于单独处理,同时并未影响果实的外观食用品质。吴凡等[70]发现,与1-MCP单独处理比较,1-MCP+ClO2协同处理能够减缓樱桃果实硬度、可溶性固形物含量、可滴定酸含量、维生素C含量下降,抑制果实呼吸强度,保持果实口感风味,果实腐烂率明显降低,延缓果实衰老并延长贮藏保鲜期。Yang等[71]证明加压氩气和气调的联合处理甜樱桃可有效降低果实腐烂率,延缓果实亮度下降,抑制可溶性固形物、可滴定酸和抗坏血酸等含量的降低。De Paiva等[72]在探究改良气调包装和拮抗酵母联合防治甜樱桃青霉病时发现,M50微孔膜与Metschnikowia pulcherrima L672拮抗酵母联合作用可有效控制青霉菌的扩张,延长甜樱桃贮藏时间。刘尊英等[44]在观察热水结合VC处理对甜樱桃果实贮藏品质的影响时发现,42℃热水与0.1%VC联合作用,显著抑制了甜樱桃果实褐变和腐烂率的上升及可滴定酸和抗坏血酸含量的下降。复合保鲜方式已逐步成为保鲜领域的热点,包括热处理联合拮抗菌、复合气调、改良包装联合拮抗菌、热处理结合化学制剂等。

3 结语

樱桃因其果肉香甜、营养丰富而深受人们的喜爱,我国樱桃产量也在逐年上升,但樱桃果皮嫩薄,易受机械损伤,从而微生物侵染导致腐烂。为了延长销售期和适应长途运输的需求,樱桃的保鲜技术仍需不断探究。目前,国内外学者在樱桃保鲜技术的研究与开发等方面做了较多研究,可以发现不同保鲜技术对樱桃保鲜作用效果及特点不同。纵观甜樱桃保鲜技术研究现状,低温控制的物理保鲜手段和以化学保鲜剂保鲜的化学保鲜手段是我国市场上运用最多、最成熟的保鲜方式。但低温物理保鲜设备昂贵且耗电量大,成本较高;化学保鲜剂因存在超标、残留等问题而遭到消费者排斥;生物防治剂的运用成为了甜樱桃保鲜的热点,但目前国内市场并未广泛应用;复合保鲜方式采用多种方式结合,效果明显,目前已在樱桃上研究的复合保鲜方式物理联合生物防治较多。

猜你喜欢

保鲜樱桃含量
樱桃肉,让年味飘香
压滤后盐泥中的盐含量和水含量
樱桃保鲜掌握技巧
不同桑品种黄酮含量测定
HPLC法同时测定蓝桉果实中两种marocarpal型成分含量
芪红水煎剂化学成分的HPLC-FT-ICR-MS快速表征与HPLC多成分的含量测定
不聊天,感情怎么保鲜?
爱情保鲜术
一树樱桃带雨红
吃不到的樱桃