APP下载

浅谈量化投资在国内市场的发展

2020-12-23张文娟

中国商论 2020年16期

张文娟

摘 要:量化投资是一种与传统投资模式存在较大差异的投资方式。量化投资首先是基于理论上构建的数学模型,其次依据现有的大数据技术,确定数学模型所要的基本自变量参数,把参数代入数学模型中得出分析结果与现有的实际结果对比后修正自变量参数,最后代入模型分析这种迭代的方式,直到得出满意的数学模型及参变量。本文选择当前阶段在我国国内市场发展的量化投资作为研究对象,经过简单分析后得出相应的结论。

关键词:量化投资  传统投资  模式数学模型  自变量参数

中图分类号:F830.59 文献标识码:A 文章编号:2096-0298(2020)08(b)--02

1 量化投资简介

1.1 基本概念

量化投资是一种借助于计算机高效计算程序进行复杂运算,以金融产品未来收益与风险为研究对象的新型投资方式。量化投资的基础是以股票价格、日成交额等大数据库数据为参考样本数据并建立数学模型,运用仿真分析及迭代方法不断修正数学模型,直到数学模型可以用来预测指导投资交易。任何一个投资的方案或者设想,都可以为它设计一个数学模型,然后借助大数据库的现有数据进行迭代法测试分析,以此来判别数学模型的有效性。

传统投资方式基本上是对传统的技术分析和公司的经营状态基本分析,存在一定的局限性;相比之下量化投资分析是基于对大数据市场数据的,数据样本空间容量足够大,而且可以快速进行运算并排除投资者个人心理因素的主观影响,科学性和时效性更强。此外,量化投资是一种主动性的投资方式,在进行数学模型选择、自变量选取、数学模型的验算迭代都是投资行为的主动部分。

1.2 交易内容及方法

量化投资交易的内容主要是量化策略以及交易策略,在制定交易策略时必须立足于投资市场、投资产品以及分配在内等。具体交易平台则是靠以计算机计算程序为基础的线上交易平台系统。

进行量化投资交易时通常会遇到各种较为复杂的情况,但是基本前提都是要依据现有的既定的大量数据库数据,灵活采用各种方法来判断投资对象是否值得投资。总体来说,量化投资有估值法、资金法和趋势法三种。

2 量化投资现状

从理论上来说,每个量化投资者的决策行为可以被同化为理性预期、风险规避、严格效用基本一致的理想化模型。然而现实情况中每个人的心理活动、出发点、知识水平等都存在差异,进行量化投资时人们作出的决策也存在差异。人的非理性行为与理性行为都是客观存在的,而且非理性行为对理性行为也存在着一定的影响,因此投资人在进行投资决策时并不能完全理性地进行选择。

综上所述,非理性人的客观存在使投资人在进行投资决策时不能完全忽视个人的心理因素。既然个人的心理因素无法排除,那么在建立决策分析数学模型时,就应该把个人的心理因素考虑在内。当前我国国内量化投资有以下几个特点:

(1)个人投资者占总投资者的比例很高。上文已经提到投资者个人的非理性客观存在且不可避免,那么众多量化投资者的非理性因素间接影响我国量化投资市场。

(2)我国的量化投资市场虽然发展迅速但仍不成熟。与美国及欧洲发达国家相比,我国量化投资市场只能是一个新兴的市场,直接表现在各方面的信息不完整且难以搜集,一些基础数据我们只能自己想方设法地去开发获取。

(3)量化投资行业的企业构成比较复杂。目前我国量化投资行业的企业种类比较多,跨越众多不同的领域。加上我国量化投资市场还处于新生期,市场不稳定信息变化较快,因此量化投资行业的可用层面指标数目非常少且指標数值经常变化。当前我国量化投资者正是依据当前行业的特点,从不同的层面和角度验证分析,建立泡沫型数学分析模型,才能获得巨大的利润。

(4)量化投资策略研究落后。通过把我国量化投资策略与美国及西方发达国家的量化投资策略进行对比,发现我国现有的量化投资策略严重落后。国外的量化策略研究是在大量的事件、数据积累分析的基础上,脚踏实地潜心研究总结出来的。现阶段我国量化策略研究多是借用国外的策略,结合国内的量化投资行业的实际现状进行修正得来的。当前我们还缺少指导量化投资行业的专家、指导著作,为此我国国内的一些高等院校开始着手量化投资策略的研究并取得了初步的成效。

3 量化投资优势

量化投资是在定性投资基础上进行继承和延伸的一种主动投资工具。定性投资的核心是对宏观经济和市场基本面进行深入的分析,再加上实地调研上市公司以及与上市公司的管理层进行经验交流,最终把调研结果整理成专题报告,把报告作为决策依据。不难看出定性投资带有很大的个人主观判断性,它完全依赖于投资经理个人经验以及对市场的认知。量化投资在调研层面与定性投资相同,区别在于量化投资更加注重数据库大数据,运用各种方法发现运用大数据所体现出来的有用信息,寻找更优化的投资方式以获得大额收益,完全避免了投资经理个人的主观臆断和心理因素,更加科学合理。综上所述,与定性投资相比,量化投资具有以下优势。

3.1 投资方式更加理性

量化投资是采用统计数学与计算机建模分析技术,以行业大数据库为参考,取代了个人主观判断和心理因素的科学客观投资方法。很明显,行业大数据的样本容量已远远高于有限的对上市公司调研所形成的样本容量;在进行投资决策时,把决策过程科学化数量化可以最大程度的减少投资者决策时个人情感等心理因素对决策结果的影响,从而避免了错误的选择方向。

3.2 覆盖范围大效率高

得益于因特网的广泛实施应用,与各行各业的运行数据都可以录入大数据系统形成体量巨大的数据库;得益于计算机行业云时代到来对计算分析速度的革命性变革,在极短的时间内就可以得到多种量化投资的投资方法。定性投资方式进行决策时,由于决策人的精力和专业水平都存在一定的局限性,自然其考虑投资的范围要远远低于电脑决策,二者根本没有可比性。

综上所述,虽然与定性投资相比,量化投资具有明显的优势,但是二者的目的是相同的,都以获得最大收益为目的,多少情况量化投资与定型投资可以互相补充,搭配使用会起到意想不到的效果。

4 量化投资的劣势

上文已经提到量化投资的决策过程依赖于大数据库以及计算机分析系统的科学决策,因此只要投资思想正确量化投资就不会出现错误。然而即使是投资思想及决策过程都没有问题,也不意味着量化投资完美无缺。量化投资本质上是对某一特定基准面的分析,事实上基准面有时范围过小,纵然决策过程合理化、无偏差,量化投资也存在一定的局限性。量化投资的另一特点是进行考察决策时覆盖的市场面非常广泛,在当前国民经济快速发展的时代,人们对市场的认知难免出现盲区或者对某一个局部了解不充分的现象,此种情况下量化投资的正确性就很难保证。

4.1 形成交易的一致性

基于量化投资的低风险特性,人们更多地依赖于采用大数据云分析平台进行决策,如此大家对某一行业的市场认知以及投资决策水平就处在同一认知层次上,当遇到极端的市场行情时,人们作出的交易决策往往一致,即容易达成交易的一致性。例如期货行业以及股票行业,在市场行情动荡的特殊时期,人们往往选择在同一时机抛出股票或者期货,这种大规模的一次性抛盘则会造成在预期抛售价格基础上的剧烈波动,导致投资者的实际收益在一定程度上低于预期收益。此种情形下又会引起新一轮投资恐慌,不利于市场的稳定发展。

4.2 指标钝化和失效

任何一个行业的某一个市场承载投资者的容量都是有限的,从战略投资的角度来看,当某一个市场的产业链较为成熟、技术门槛较低时,投资者进入该市场就会容易很多,当市场的承载量大大低于投资者进入数量时,既定的投资策略则会失效。例如某一企业的某只股票第一年能獲得50%的收益,第二年则降为20%的收益,第三年可能是5%,第四年就没有收益了。诸如趋利反转策略、套利策略现在已经非常大众化且投资者已经达成共识,一拥而上集中式进行投资就会导致投资评价指标钝化甚至失效。

5 结语

当前我国的量化投资市场发展很快且达到了一定规模,但与西方发达国家的量化投资市场相比仍处于初生期,因而存在投资市场指标钝化或失效、可用投资参考数据缺失等一系列问题。为解决现有量化投资市场的众多问题,本文首先对量化投资的定义以及投资内容及方法进行说明。 其次就我国现阶段量化投资市场的现状及特点进行了详细说明。再次说明了现有量化投资市场的投资方式较为理性、覆盖范围大且运行效率高等优势。最后说明我国量化投资市场的劣势。

参考文献

石龙富.量化投资策略浅谈[J].当代教育实践与教学研究,2017(03).

张鑫.量化投资发展趋势及其对中国的启示[J].中国商论,2018(01).

张玲.行政事业单位国有资产管理存在的问题及对策[J].财经问题研究,2013(S1).