一种基于Petri网和因果关系矩阵的事件日志过程挖掘方法
2020-12-14范涛方贤文
范涛 方贤文
摘 要:提出一种基于Petri网和因果关系矩阵的事件日志过程挖掘方法.基于Petri网和因果关系矩阵的事件日志过程挖掘算法,利用因果关系矩阵进行过程挖掘,其过程模型可以更好地匹配系统产生的事件日志集.
关键词:Petri网;因果关系矩阵;事件日志;过程挖掘
[中图分类号]TP391.9 [文献标志码]A
Abstract:An event log process mining method based on Petri net and causality matrix is proposed.The process mining algorithm based on the idea of mutual transformation between Petri nets and causal relationship matrix uses the causal relationship matrix for process mining,and the resulting process model can better match the event log set generated by the system.
Key words:Petri net;causality matrix;event log;process mining
随着信息时代的到来,过程挖掘[1]技术得到了飞速发展,取得了重要成果.Alast等人提出的α算法[2]是最早的过程挖掘算法,它不僅被广泛使用,而且对后来的算法有着广泛而又深远的影响.清华大学闻立杰团队利用改进的α算法——α*算法[3]——从事件日志中挖掘出了不可见任务[4],使其具备了挖掘不可见任务即隐变迁的能力.笔者针对过程挖掘中由于模型和事件日志的复杂性,很难将此过程数字化表示并与计算机相结合提高工作效率这一问题,提出了一种基于Petri网和因果关系矩阵的事件日志过程挖掘方法.
1 基本概念
3 总结
本文提出一种基于Petri网和因果关系矩阵的事件日志过程挖掘方法,利用因果关系矩阵进行过程挖掘,得到的过程模型可以更好地匹配系统产生的事件日志集.计算机直接处理过程模型很棘手,特别是处理复杂的过程模型对计算机的相关性能有很高的要求,将过程模型转化成因果关系矩阵可以大大减少计算机的工作量,只需要能够处理简单数字矩阵的计算机就可以完成此项工作.Petri网图形和因果关系矩阵的相互转化对于促进业务流程的数字化发展也有很大的帮助.在未来的工作中,还要对此方法的代码实现做进一步研究,争取早日上传此系统框架并应用于实际.
参考文献
[1]Cook J E,Wolf A L.Automating process discovery through event-data analysis[J].Software Engineering,1995:73-82.
[2]Agrawal R,Gunopulos D,Leyman F.Mining process models from workflow logs[M].Springer Berlin Heidelberg,1998.
[3]Greco G,Guzzo A,Pontieri L.Mining hierarchies of models:From abstract views to concrete specifications[M].Business Process Management Springer Berlin Heidelberg,2005:32-47.
[4]Herbst J,Karagiannis D.Workflow mining with InWoLvE[J].Computers in Industry,2004,53(3):245-264.
[5]罗海滨,范玉顺,吴澄.工作流技术综述[J].软件学报,2000,11(7):899-907.
[6]Wang J,Jin T,Wong R K,et al.Querying business process model repositories:A survey of current approaches and issues[J].World wide web,2014,17(3):427-454.
[7]Mashinchi M H,Orgun M A,et al.A tabu-harmony search-based approach to fuzzy linear regression[J].Fuzzy Systems,IEEE Transactions on,2011,19(3):432-448.
[8]Meeran S,S.Morshed M.A hybird genetic tabu search algorithm for solving job shop scheduling problems:a case study[J].Joural of Intelligent Manufacturing,2012,23(4):1063-1078.
[9]Li J,Pan Y.A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem[J].The International Journal of Advanced Manufacturing Technology,2013,66(1-4):583-596.
[10]陈志刚,文一凭,康国胜.成批处理工作流动态分组调度优化方法[J].计算机集成制造系统,2012,18(8):1693
编辑:琳莉