葡萄糖超临界水气化制氢Ni/Zr(Ce,Y)O2-δ催化剂改性研究
2020-12-14连晓燕朱超黄建兵
连晓燕 朱超 黄建兵
摘 要:采用共沉淀法制备了ZnO或Co改性的Ni/Zr(Ce,Y)O2-δ(NZCY、ZnO-NZCY和Co-NZCY)催化剂,将其应用于间歇式反应釜进行葡萄糖超临界水气化(SCWG)制氢研究。反应条件:进料质量分数10%、温度500 ℃、压力23~24 MPa。结果表明:使用NZCY后,葡萄糖SCWG的氢气产量为17.01 mol·kg-1,为不加催化剂的7.62倍,碳气化率为75.46%,使用ZnO和Co改性的催化剂后碳气化率分别继续增至79.28%和78.54%。使用Co-NZCY后氢气产量继续增至18.46 mol·kg-1,略高于ZnO-NZCY,但甲烷产量略低于ZnO-NZCY。可见,Co利于水气转换反应,而ZnO利于甲烷化反应。采用XRD、SEM、N2吸脱附等手段对催化剂进行表征,发现催化剂具有良好的水热稳定性和抗积碳性,可归因于ZnO或Co与Ni单质以及Zr(Ce,Y)O2-δ载体之间的协同催化作用。
关 键 词:生物质;催化剂;超临界水气化(SCWG);制氢;水热稳定性;抗积碳性
中图分类号:TK 6 文献标识码: A 文章编号: 1671-0460(2020)10-2142-07
Abstract: In order to improve the catalytic effect of Ni/Zr(Ce,Y)O2-δ (NZCY) catalyst on supercritical water gasification (SCWG) of glucose for hydrogen production, a series of ZnO or Co modified NZCY(ZnO-NZCY or Co-NZCY)catalysts were prepared by carbonate co-precipitation. The catalytic gasification experiments were conducted in a batch reactor under conditions of 500 ℃, 23~24 MPa and feed mass fraction of 10%. The gasification results demonstrated that the hydrogen yield of 17.01 mol·kg-1, about 7.62 times of that without catalyst, was obtained with NZCY catalyst, and carbon gasification efficiency was 75.46%. After using ZnO and Co modified catalysts, carbon gasification efficiency increased to 79.28% and 78.54%, respectively. Hydrogen yield further increased to 18.46 mol·kg-1 with Co-NZCY catalyst,slightly higher than that of ZnO-NZCY, but methane yield was slightly lower than that of ZnO-NZCY. It can be concluded that Co is conducive to water-gas conversion reaction; however, ZnO is conducive to methanation reaction. XRD, SEM, N2 adsorption and desorption, TG and XPS were adopted to characterize the catalysts, and the results demonstrated that the catalysts exhibited excellent hydrothermal stability and anti-carbon performance, attributed to the synergistic catalysis between ZnO or Co, Ni and Zr(Ce,Y)O2-δ carrier.
Key words: Biomass; Catalyst; Supercritical water gasification (SCWG); Hydrogen production; Hydrothermal stability; Anti-carbon performance
氫气作为一种优质、清洁、高效的理想能源,具有替代传统化石燃料的潜力。然而,目前工业规模制氢主要依赖于化石燃料原料[1]。生物质超临界水气化(SCWG)制氢技术可以实现“碳中和”和接近零污染,引起了广泛的关注[2-5]。在生物质SCWG工艺中采用合适的催化剂,可在温和的反应条件显著提高气化效率和氢气产率。镍基催化剂因其成本低、催化活性高而被广泛应用。然而多数镍催化剂及其载体在SCWG过程中会因烧结和积碳失活[6-9]。
大量研究表明,含有Zr、Ce、Y组元的载体可兼顾高催化活性、高水热稳定性和抗积碳能力的优良性能。ZHU[10]等采用超临界水合成法制备的Ni/ZrO2催化剂对甘油SCWG具有优异的水热稳定性和抗结焦能力。LU[11]等发现CeO2可除去葡萄糖SCWG过程中镍基催化剂的表面积碳。AZADI[12]等研究了44种载体对镍基催化剂催化葡萄糖SCWG的影响,发现在ZrO2中引入Y2O3,形成稳定的Y2O3-ZrO2固溶体,可提高Ni/ZrO2的催化活性。此外,研究发现引入二次金属或者金属氧化物如Co、ZnO、Cu等作为助剂可进一步提高镍基催化剂的活性。KOU[13]等采用溶胶-凝胶法制备了不同助剂(Co、Ce、La、Y、Mg)改性的Ni/ZrO2催化剂,发现使用Ni-Co/ZrO2后含油废水SCWG的碳气化率大大提高。李俊磊[14]等采用等体积浸渍法制备了Ni/Al2O3、Fe/Al2O3、CoMo/Al2O3和NiCo/Al2O3催化剂,研究其对甘油水蒸气重整制氢反应的催化效果,发现NiCo/Al2O3的催化效果最好。MASTULI[15]等采用催化剂(20NiO/MgO、20CuO/MgO和20ZnO/MgO)在超临界水中催化油棕榈叶气化制氢,发现20ZnO/MgO的氢气产率最高。
由于ZrO2、Y2O3和CeO2共同作为葡萄糖SCWG镍基催化剂载体的研究报道尚少见,故选取掺杂的Zr(Ce,Y)O2-δ为载体,以综合利用ZrO2、CeO2和Y2O3在保证Ni催化剂的活性、水热稳定性和抗积碳性方面的协同作用。为进一步提高气化率和氢气产率,选取Co和ZnO作为助剂,采用碳酸盐共沉淀法制备了ZnO或Co改性的Ni/Zr(Ce,Y)O2-δ催化剂,选取葡萄糖为生物质模型化合物,在高温高压釜式反应器中进行SCWG实验。采用XRD、SEM、TG等对催化剂进行表征分析,为生物质SCWG制氢催化剂的研究提供了指导。
1 实验部分
1.1 材料
六水合硝酸镍、五水合硝酸锆、六水合硝酸铈、六水合硝酸钇、六水合硝酸锌、六水合硝酸钴、无水碳酸钠、葡萄糖,以上试剂均属于分析纯,购买于国药集团化学试剂有限公司。
1.2 催化剂的制备
Ni/Zr(Ce,Y)O2-δ(NZCY)及ZnO或Co改性的Ni/Zr(Ce,Y)O2-δ(ZnO-NZCY或Co-NZCY)催化剂根据前期的研究[16]采用碳酸盐共沉淀法制备,具体步骤如下:以相应的金属硝酸盐为原料,配制一定量的摩尔浓度为0.1 mol·L-1的混合金属离子溶液(其中Ni2+、Zr4+、Ce3+、Y3+的摩尔比为5∶4∶4∶2;对于改性样品,控制Zn2+或Co2+在总金属离子中摩尔分数为5%);配制一定量的摩尔浓度为0.2 mol·L-1的Na2CO3溶液作为沉淀剂,其中CO32-与金属离子的摩尔比为2∶1;将混合金属离子溶液通过分液漏斗逐滴滴入磁力搅拌器持续搅拌的40 ℃的Na2CO3溶液中;溶液老化过夜后用去离子水和无水乙醇多次洗涤抽滤;将滤饼于105 ℃真空干燥过夜;将干燥后的沉淀物充分研磨,过200目筛后置于马弗炉中500 ℃焙烧3 h;将焙烧后的氧化物置于管式炉中650 ℃下通H2还原2.5 h,氢气流量50 mL·min-1;将还原后的催化剂密封保存待用。
1.3 活性评价
催化剂的活性测试在高温高压釜式反应系统中进行,见图1。反应器材质为Inconel 625合金,容积为10 mL。选取葡萄糖作为生物质模型化合物,首先将1.5 g质量分数为10%的葡萄糖水溶液加入反应器中,进料干质与催化剂的质量比为1∶1;然后通过Ar吹扫置换反应器中的空气,并给予一定的初压;将反应器移入已加热到设定温度的电炉中,反应器内的平均升温速率约为70 ℃·min-1,当反应器内反应温度达到500 ℃、压力达23 MPa时,开始计时,停留时间为30 min。整个反应过程中,反应温度在500±5 ℃内波动,反应压力23~24 MPa。反应结束后,通过水冷将反应器冷却至常温,平均冷却速率约为200 ℃·min-1。最后,用气囊收集气体产物,并通过气相色谱仪(Agilent 7890A)分析其具体组成。
1.4 催化剂的表征
催化剂的晶相分析采用X射线衍射仪(XRD),Cu靶,Kα 辐射,扫描角度为(10~90)o。利用ASAP 2020仪对催化剂的N2吸附/解吸等温线、比表面积和孔径分布进行了分析。测试前先将样品在300℃脱气处理120 min。分别用Brunauere- Emmette-Teller(BET)法和Barrette-Joynere-Halenda(BJH)法测定了催化剂的比表面积和孔径分布。用JEOL-JSM-6700F场发射扫描电镜(SEM)观察了催化剂的表面形貌。采用DSC-TG测定仪,在空气气氛中进行TG分析,升温速率为10 ℃·min-1, 20~ 1 000℃,通过分析软件得DTG曲线。用X射线光电子能谱仪(XPS)分析表面化学环境。
2 结果与讨论
2.1 催化活性
气化效果见图2。
从图2(a)可知,经NZCY催化后,葡萄糖SCWG的碳气化率从26.85%增至75.46%,总气化率从33.49%增至94.98%,氢气选择性从12.62%增至34.09%。使用ZnO 和Co改性的催化剂后,碳气化率分别继续增至79.28%和78.54%,总气化率分别继续增至99.86%和100.47%,氢气选择性变化不大。因CeO2丰富的氧空穴和较高的储氧能力有助于催化剂表面氧化还原反应的发生,可提高催化剂的抗积碳能力,从而可以提高碳气化率[11, 18, 19]。从图2(b)可知,NZCY催化后氢气产量为17.01 mol·kg-1,为无催化的7.62倍,经Co改性后氢气产量继续增至18.46 mol·kg-1,略高于ZnO-NZCY,而甲烷产量略低于ZnO-NZCY,可见,Co利于水气转换反应(H2O+C→CO+H2,2H2O+C→CO2+2H2,CO+H2O→CO2+H2),而ZnO利于甲烷化反应(CO+3H2→H2O+CH4,CO2+4H2→2H2O+CH4)。
2.2 催化剂的结构形貌
2.2.1 晶相
图3为催化剂的XRD图谱。由图3可知,催化剂经焙烧后的图谱中存在显著的NiO的特征峰,但还原后(使用前),NiO的特征峰消失。催化剂使用前后在2θ为44.5°和76.4°出现了Ni0的两个特征峰,分别对应(1, 1, 1)和(2, 2, 0)晶面。從图3(b、c)中可以看出,2θ<60°时,CeYO和ZrCeO的晶面衍射峰强度变化较为明显,可能是由于催化剂还原过程及反应富氢气氛中Ce4+被还原为Ce3+引起的晶格变化所致。
图3(c)中催化剂经使用后出现较为明显的单质Co的衍射峰,可见气化产生的氢气进一步将Co2O3全部还原为Co。由于Co与Ni的峰相邻极近,也可能为Co-Ni合金的峰。使用后的XRD图谱中没有发现明显的碳峰,可能是由于葡萄糖SCWG过程积碳极少或积碳呈无定型态。
[5] RODRIGUEZ C C, KRUSE A. Supercritical water gasification of biomass for hydrogen production – Review[J]. The Journal of Supercritical Fluids, 2018,133:573-590.
[6] LI S, GUO L J. Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical water gasification of biomass[J]. International Journal of Hydrogen Energy, 2019, 44(30): 15842- 15852.
[7] HOSSAIN M Z, CHOWDHURY M B I, CHARPENTIER P A. Effect of surface acidity of Al2O3 supported metal catalysts on catalytic activity and carbon deposition during SCWG of glucose[J]. Biomass and Bioenergy, 2019,124:142-150.
[8] KANG K, AZARGOHAR R, DALAI A K, et al. Systematic screening and modification of Ni based catalysts for hydrogen generation from supercritical water gasification of lignin[J]. Chemical Engineering Journal, 2016, 283:1019-1032.
[9] HUANG J B, ZHU C, LIAN X Y, et al. Catalytic supercritical water gasification of glucose with in-situ generated nickel nanoparticles for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(38):21020-21029.
[10] ZHU B, LI S, WANG W J, et al. Supercritical water synthesized Ni/ZrO2 catalyst for hydrogen production from supercritical water gasification of glycerol[J]. International Journal of Hydrogen Energy, 2019, 44(59):30917-30926.
[11] LU Y J, ZHU Y M, LI S, et al. Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support[J]. Biomass and Bioenergy, 2014, 67:125-136.
[12] AZADI P, AFIF E, AZADI F, et al. Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose[J]. Green Chemistry, 2012, 14:1766.
[13] KOU J J, XU J L, JIN H, et al. Evaluation of modified Ni/ZrO2 catalysts for hydrogen production by supercritical water gasification of oil-containing wastewater[J]. International Journal of Hydrogen Energy, 2018, 43(30):13896-13903.
[14] 李俊磊,李曉香,李冬锋,等.甘油水蒸气重整制氢Ni、Co、Fe催化剂的研究[J].当代化工,2014,43(4):486-488.
[15]MASTULI M S, KAMARULZAMAN N, KASIM M F, et al. Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(16):11215-11228.
[16] HUANG J B, LIAN X Y, WANG L, et al. Hydrogen production from glucose by supercritical water gasification with Ni/Zr(Ce,Y)O2-δ catalysts[J]. International Journal of Hydrogen Energy, 2017,42(7): 4613-4625.
[17] CORTRIGHT R D, DAVDA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418(6901):964-967.
[18] LU Y J, LI S, GUO L J, et al. Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(13):7161-7168.
[19]LU Y J, LI S, GUO L J. Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3:Effect of Ce loading[J]. Fuel, 2013, 103:193-199.
[20] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations) 1984 [J]. Pure and Applied Chemistry, 1985, 57:603-619.
[21]CHUEH W C, FALTER C, ABBOTT M, et al. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichio- metric Ceria[J]. Science, 2010, 330(6012):1797-1801.