APP下载

解答高考不等式客观题的特殊方法

2020-12-10

高中数理化 2020年19期
关键词:观察法图象单调

◇ 唐 俊

不等式是高中数学的基础模块,也是高考重点考查内容,且多以客观题的形式出现,常结合函数、数列等知识点,考查视角主要涉及解不等式、比较代数式的大小等.下面结合近年高考题或模考题,针对不等式问题的解答,提出几种特殊方法.

1 观察法

解不等式问题通常结合与其对应的方程,求解方程的根,而有些方程是含有指数或对数函数的超越方程,其根无法利用常规方式求解,故可采用观察法,得出所求不等式的解集.

例1(2020年北京卷)已知函数f(x)=2xx-1,则不等式f(x)>0的解集是( ).

A.(-1,1) B.(-∞,-1)∪(1,+∞)

C.(0,1) D.(-∞,0)∪(1,+∞)

令f(x)=0,即2x-x-1=0,此方程为超越方程,无法直接求解,利用观察法可得其根为0,1,结合函数y=2x与y=x+1的图象特征,可知该方程没有其他根,所以不等式f(x)>0的解集为x<0或x>1,故选D.

应用观察法求方程的根时,要结合函数特征,若方程中含有指数函数,可利用0,1等特殊点进行验证;若方程中含有对数函数,可用1或与对数函数的底数有关的数值进行验证.在利用观察法得出方程的根后,判断是否含有其他根时,要结合函数零点的存在定理或唯一性定理.

2 数形结合法

在解答与函数有关的不等式问题时,若函数的图象能够准确描绘出,或能快速找出相应函数之间的位置关系,则可利用数形结合法求解.

例2已知函数若f(x)>f(x+1),则x的取值范围是_________.

函数f(x)是由幂函数及一次函数构成的分段函数,其分段点为1.f(x+1)的图象可由f(x)的图象向左平移一个单位得到,在同一平面直角坐标系中作出函数f(x)(虚线)和f(x+1)(实线)的图象,如图1所示.结合图象可知,f(x)>f(x+1)的解集为(0,1].

图1

应用数形结合法解不等式,关键在于找到不同函数图象之间的位置关系.如本题中将向左平移一个单位,f(x)与f(x+1)的位置关系是在区间(0,1),f(x)在f(x+1)的上方;在区间(1,+∞),f(x)在f(x+1)的下方.这一关系的准确利用是求解此不等式的关键.类似地,y=x-1与y=lnx,y=x+1与y=ex,以及y=x与y=sinx等关系,在相关不等式问题的求解中均有重要的应用.

3 单调性法

单调性法是处理不等式问题的重要方法,即利用题目所给关系式的结构特征,构造相关函数,再判断函数的单调性,进而利用函数的单调性进行大小关系的判断.

例3(2020年全国卷Ⅰ)若2a+log2a=4b+2log4b则( ).

A.a>2bB.a<2b

C.a>b2D.a<b2

由2a+log2a=4b+2log4b变形,可得

设函数f(x)=2x+log2x(x>0),易判断f(x)在区间(0,+∞)内单调递增,所以a<2b.故选B.

应用此方法解题的关键是将所给关系式左右两端构造成同构式,从而引入相应函数,再判断函数的单调性.本题中所构造函数的单调性可利用基本初等函数的单调性进行判断,对于较复杂的函数的单调性,可利用导数判断.

4 赋值法

赋值法,即通过代入特殊值进行检验,排除错误选项.此方法是处理不等式性质问题的简捷方法.

本题可以直接利用不等式的性质进行一一验证,但利用赋值法更显“小题小做”的优势.在应用此方法解题中,要注意所选特殊值不能“以偏概全”,例如,已知a>b,判断的大小关系,若a,b均取正数或均取负数,可得,但a>0,b<0时,则有

5 借值法

借值法是指借助中间值求解问题,在解答比较大小的不等式问题时,可通过选取中间值搭建桥梁,将待比较的数与中间值进行比较,从而判断出大小关系.

例5已知x=lnπ,y=log52,z=则( ).

A.x<y<zB.z<x<y

C.z<y<xD.y<z<x

对于不易直接应用作差或作商比较大小的问题,可通过寻找中间值,如0,,1等.本题易得出0<y<1,0<z<1,故可考虑借助值进行比较,比较过程中要准确应用常数与对数式、常数与指数式之间的转化关系.

6 放缩变换法

即利用所给的条件,或基本不等式的性质将待比较的代数式进行放大或缩小后,再比较大小.

例6(2020年全国卷Ⅲ)已知55<84,134<85,设a=log53,b=log85,c=log138,则( ).

A.a<b<cB.b<a<c

C.b<c<aD.c<a<b

本题在求解过程中利用了均值不等式及不等式的性质进行放缩.此方法的应用要注意放缩工具的选择,放缩要适度.另外在比较a,b的大小关系时,也可利用作差法,即

总之,与不等式有关的问题虽然常考常新,但万变不离其宗,只要我们把握相应的解题技能,即可以静制动.

链接练习

1.已知a>b,则下列不等关系正确的是( ).

A.ln(a-b)>0 B.3a<3b

C.a3-b3>0 D.|a|>|b|

2.已知函数f(x)的定义域为(-∞,+∞),且对于∀x∈(-∞,+∞),有f(-x)+f(x)=0.当x≥0时,f(x)=(|x-a2|+|x-2a2|-3a2).若f(x-1)≤f(x)对∀x∈(-∞,+∞)都成立,则实数a的取值范围是( ).

3.(2020年全国卷Ⅱ)若2x-2y<3-x-3-y,则( ).

A.ln(y-x+1)>0 B.ln(y-x+1)<0

C.ln|x-y|>0 D.ln|x-y|<0

4.已知函数则不等式f(x)≥log2(x+1)的解集为( ).

A.(-1,0]B.[-1,1]

C.(-1,1]D.(-1,2]

链接练习参考答案

1.C.2.B.3.A.4.C.

猜你喜欢

观察法图象单调
单调任意恒成立,论参离参定最值
基于扰动观察法的光通信接收端优化策略
函数y=Asin(ωx+ϕ)的图象
数列的单调性
数列的单调性
观察法求解至少有一个有理根的一元高次方程
小学语文写作教学中观察法的运用
对数函数单调性的应用知多少
从图象中挖掘知识的联结点
行动观察法评价的5种应用形式