巴西桑托斯盆地盐下碳酸盐岩油藏硅化作用成因及其对储层的影响
2020-12-01商志垒尚凡杰马学立
商志垒,武 静,尚凡杰,于 斌,马学立,覃 天,周 祚
(1.中国海洋石油国际有限公司勘探开发技术研究院,北京 100028;2.中国海洋石油国际有限公司业务发展中心,北京 100027)
碳酸盐岩硅化作用是常见的成岩作用[1],在沉积、早-晚成岩阶段的各个时期都能发生[2-4],主要表现为碳酸盐矿物被硅质交代,少数情况下表现为硅质矿物在孔隙空间内胶结。当硅化作用足够强烈时,碳酸盐岩将转变为硅质岩,包括燧石和蛋白石等[1]。DEMASTER 指出海水中硅质的主要来源包括河流、火山活动及其相关的热液、火成岩的风化和蚀变,以及沉积物中硅质生物的溶解[5]。对于湖水来说,具有类似的硅质来源[6-7],且黏土矿物的溶解或蚀变也可以提供硅质[8]。
勘探实践证实,桑托斯盆地下白垩统Itapema组和Barra Velha 组(简称为ITP组和BVE组)碳酸盐岩为良好储层[9-10],其规模显著大于中国湖相碳酸盐岩油藏[11-13]。此外,临近的坎波斯盆地和非洲西海岸的共轭盆地相同沉积时期盐下碳酸盐岩均发育巨厚储层。对于这些碳酸盐岩来说,包括硅化作用在内的成岩作用对储层物性具有重要影响。近年来,针对硅化作用的相关研究开始见诸报道[2,14-18]。TEBOUL 等根据岩石矿物学、同位素和流体包裹体资料将坎波斯盆地盐下碳酸盐岩广泛发育的硅化作用归因于热液蚀变[17]。LIMA 等结合综合资料进一步证实这种热液蚀变与岩浆活动有关[16]。TRITLLA 等研究认为坎波斯盆地硅化作用具有多阶段性[2]。同样,TRITLLA 等证实西非宽扎盆地盐下储层硅化作用形成于早期成岩阶段和晚期埋藏阶段,致使部分碳酸盐岩转变为硅质岩[18]。
总体来说,针对桑托斯盆地盐下碳酸盐岩成岩作用的研究成果较少。虽然少数学者在临近盆地和共轭盆地开展了硅化作用分析,但目前尚未发表针对桑托斯盆地盐下碳酸盐岩储层硅化作用成因的研究,同时硅化作用对储层的具体影响也尚未涉及。为此,笔者针对研究区特征多样的硅化作用进行研究,厘定其成因机制,建立研究区岩浆活动与硅化作用的成因联系,在此基础上明确不同硅化作用对储层物性的影响程度和空间分布特征,从而为研究储层非均质性及储层表征奠定基础。
1 区域地质背景
桑托斯盆地位于巴西东南海域,是巴西最大的海上盆地之一,面积为352 000 km2,其北部与坎波斯盆地毗邻,南部与佩洛塔斯盆地相接[19]。M 油田位于桑托斯盆地东北部,距离里约热内卢东南海域约为180 km(图1)。桑托斯盆地的形成和演化与早白垩世冈瓦纳超大陆裂解有关[20],其逐渐从彼此分隔的小型地堑演变为区域上同步沉降的大型盆地。
图1 桑托斯盆地区域构造位置Fig.1 Regional structual position of Santos Basin
图2 桑托斯盆地早白垩世地层柱状图(据文献[9]修改)Fig.2 Stratigraphic integrated column of early Cretaceous formations in Santos Basin(Modified according to Reference[9])
桑托斯盆地基底为前寒武系变质岩,裂谷早期地层Camboriu 组由拉斑玄武岩构成[21]。桑托斯盆地沉积充填可以划分为3个超层序,分别为裂谷期、裂后期和漂移期[22]。裂谷期发育下白垩统Picarras组和ITP 组(图2),Picarras 组主要发育湖盆边缘的陆源硅质碎屑和湖相富有机质泥岩,ITP 组则主要为双壳砾屑灰岩、颗粒灰岩和湖相泥岩沉积[9]。裂后期发育BVE 组和Ariri 组(图2),BVE 组岩石类型主要为湖相叠层石灰岩、颗粒灰岩、球粒灰岩和纹层灰岩[23]。ITP 组砾屑灰岩和颗粒灰岩以及BVE 组叠层石灰岩、颗粒灰岩构成桑托斯盆地盐下碳酸盐岩储层。在Ariri 组沉积时期,盆地由于受南部Walvis构造脊遮挡处于局限海环境,发育一套蒸发盐岩地层[24]。自Ariri 组沉积时期后,桑托斯盆地进入漂移期,逐渐演化为被动大陆边缘盆地,充填了一套巨厚海相沉积,包括早期的浅海碳酸盐岩台地、晚期的海相泥岩夹深海浊积砂岩[10]。
岩浆活动在桑托斯盆地多个演化阶段均有发育。早白垩世裂谷早期,伴随强烈断陷发育大量拉斑玄武岩[25],距今地质年龄约为131.2~126.2 Ma[26]。此后,在距今地质年龄为(120.4±0.8)和(115.7±1)Ma 至少又发育2 期溢流玄武岩,与ITP 组和BVE 组碳酸盐岩互层[26]。另外,MIZUSAKI 等证实桑托斯盆地在距今地质年龄为101~87 和55~39 Ma发育多次岩浆活动[27]。
2 硅化作用发育特征
研究区1 295 个样品的硅质含量统计结果显示,超过半数(占比为54%)样品发育硅化作用,表明研究区硅化作用较为普遍。但仅有17%的样品属于中-强硅化作用,硅化作用强度具有明显的不均一性。
2.1 硅化作用层段岩石矿物学特征
岩心观察显示硅化作用层段为灰白色(图3),呈薄层状、透镜状或结核状(图3a)。该类硅化作用层段的单层厚度小,一般为2~20 cm。局部可见较厚的强烈硅化作用层段,可达2 m 左右。部分层段显示强烈的硅质胶结,使岩心异常致密(图3b)。局部可见不规则状硅质角砾,与其他内碎屑共生(图3c)。部分层段可见硅质沿裂缝充填和交代(图3d,图3e)。局部硅化作用使叠层石灰岩发生强烈改造,形成角砾化网状硅化作用层段(图3e),该类硅化作用层段的厚度最大可达7 m左右。
图3 M油田硅化作用层段岩心特征Fig.3 Core characteristics of silicified intervals in M Oilfield
根据岩石薄片鉴定结果进一步将研究区硅化作用特征分为3 类:硅质角砾、硅质胶结和硅质交代。镜下观察结果显示,硅质角砾成分为纯质的石英集合体(图4a),该类硅质角砾分布较少。与胶结和交代作用相关的硅质矿物成分为石英和玉髓,石英晶体的形态和结构为半自形微晶状、半自形中晶镶嵌状(图4b)、中晶等厚环边柱状(图4c)、粗晶晶簇状(图4d)等;玉髓呈细-中晶纤维束状和葡萄状(图4e)。硅质胶结物充填于粒间孔隙内部(图4b),沿生屑表面生长(图4c),或沿裂缝充填(图4f)。当裂缝发育于高基质孔隙岩石内,硅质易进入基质孔隙,发生胶结作用和交代作用(图4f);有时可将粒间孔隙和裂缝全部填满(图4b),有时则仍保留部分孔隙空间(图4c)。对于交代硅化作用,可见石英交代球粒、叠层石(图4d)、生屑和基质,同时可见交代鞍状白云石(图4g);且交代作用程度不均,可见球粒或生屑被部分交代,仍可辨别原始结构(图4b,4e);局部可见强烈硅化作用,原始沉积结构被完全破坏(图4d),形成硅质岩。此外,在部分硅化作用层段或附近,可见云母、粗晶方解石、黄铁矿和天青石等(图4h,4i)。
2.2 硅化作用程度分布特征
根据钻井分布特征,将研究区A—H 井(图1)分为3个井区,分别为M1,M2和M3井区(表1)。从各井区单井ITP 组和BVE 组硅质含量统计结果来看,硅化作用程度不同。其中,M1井区的硅化作用程度最为强烈,单井硅质含量为15%~26%,平均硅质含量为22%。其他井区的单井硅质含量均小于10%,平均硅质含量为6%~8%(表1)。
图4 M油田硅化作用镜下微观特征Fig.4 Microscopic characteristics of silicification in M Oilfield
表1 M油田各井区单井硅质含量统计结果Table1 Statistical results of silica contents of each well in M Oilfield
纵向上,中-强硅化作用层段在BVE组和ITP组分布的位置不同(表1)。对于钻遇侵入岩的钻井,一般在侵入岩上、下层段硅化作用程度异常增高。例如B 井的中-强硅化作用层段主要分布于BVE 组中上部,尤其在紧邻BVE 组上部侵入岩之下的位置,硅化作用强度大,单井平均硅质含量可达26%(图5)。该段岩心埋深为5 220~5 248.2 m,发育厚度为7 m的角砾岩,占比为25%(图3e)。
2.3 石英内部流体包裹体均一温度特征
图5 M油田B井综合柱状图Fig.5 Stratigraphic integrated column of Well B in M Oilfield
为研究发生硅化作用的流体温度,开展石英流体包裹体实验分析。本次分析的岩石样品为来自I井(图1)4 949.90 m 处的叠层石灰岩(图6a)。样品中石英主要呈晶簇状交代叠层石,交代接触面呈不规则港湾状,可见交代残余被石英晶体包围。靠近交代接触面石英呈微晶状,远离接触面晶体粒度增大,呈半自形叶片状(图6a)。该类交代特征多见于强烈硅化作用层段(图4d)。原生流体包裹体呈气液两相(富液相)分布在石英晶体内,透射光下无色,紫外线照射无荧光显示。低于-100 ℃时包裹体不凝固且气泡大小不改变。流体包裹体多呈星形,部分为椭圆形,气泡多具较厚的暗边(图6b)。
图6 I井交代状中-粗晶石英及其内部流体包裹体特征Fig.6 Features of medium-coarse crystal replacement quartzs and their inner fluid inclusions in Well I
对I 井4 949.90 m 处岩石样品中的30 个流体包裹体均一温度进行测定,结果显示,其均一温度为87~193 ℃。整体来看均一温度较高,但变化范围较大。其中,均一温度为87~126 ℃的流体包裹体共20 个,占比为67%,133~193 ℃的流体包裹体占比为33%(图7)。
2.4 硅化作用层段地球化学特征
图7 I井原生石英内部流体包裹体均一温度分布Fig.7 Homogenization temperatures distribution of inner fluid inclusions of primary quartz in Well I
利用X 射线荧光分析分别测试研究区B井上部侵入岩段、侵入岩之下强烈和微弱硅化作用层段的主量元素氧化物含量。结果(表2,图8)显示,硅化作用微弱层段的SiO2含量小于14%,平均为9.6%,MgO 含量平均为3.2%,这2 种氧化物含量都小于侵入岩段和强烈硅化作用层段样品;CaO 含量显著高于其他2 类样品,平均为43%;其他氧化物含量,如Na2O,MgO,Al2O3,K2O 和Fe2O3等均较低,不超过1%,且基本均低于另外2类样品。
侵入岩段的SiO2含量最高,最大值近50%,平均为36.6%。CaO 含量相对最低,平均为15.5%。其他氧化物含量虽然绝对含量较少,但均高于强烈和微弱硅化作用层段。如Fe2O3的平均含量为7.9%,显著高于另外2类样品。
相比之下,强烈硅化作用层段的氧化物平均含量均位于侵入岩段和微弱硅化作用层段之间。例如SiO2,CaO 和Fe2O3的平均含量分别为30.5%,23%和5%,介于另外2类样品之间。
表2 B井侵入岩段、侵入岩之下强烈和微弱硅化作用层段主量元素氧化物含量分析Table2 Oxide contents of intrusion rock,strongly and weak silicified intervals below intrusion rock in Well B
图8 B井侵入岩段、强烈和微弱硅化作用层段氧化物含量分布特征Fig.8 Oxide contents of intrusion rock,strongly and weak silicified intervals in Well B
3 硅化作用成因
通过对岩石矿物学、流体包裹体均一温度、地球化学以及硅化作用程度分布特征等资料的综合分析,结合南大西洋两岸相似地质背景的盆地硅化作用成因调研,识别出桑托斯盆地具有3 种成因类型硅化作用,分别为沉积型、早期成岩型和岩浆期后热液型。
3.1 沉积型硅化作用
研究区可见质纯、不规则状硅质角砾(图3c,图4a),为从湖水中直接沉淀出的硅质结壳再次被搬运所形成。硅质在水体中发生沉淀需要大量SiO2[28]。在巴西盐下沉积物中,相关研究均未发现放射虫、海绵、鞭毛虫或硅藻等硅质生物存在[17],桑托斯盆地亦不发育。
ITP 组和BVE 组沉积时期,研究区湖水中SiO2的重要来源可能为岩浆活动。受冈瓦纳大陆裂解控制,距今133~120 Ma(早白垩世),巴西东南大西洋大陆边缘盆地(包括桑托斯盆地)发育大量裂前和同裂陷拉斑玄武岩[25];距今125~112 Ma,在ITP组和BVE 组内部间歇性发育玄武岩熔岩流,与湖相碳酸盐岩互层[26]。从钻井情况来看,在ITP 组沉积时期研究区亦发育玄武岩熔岩流(图5);这些进入湖水中的玄武岩熔岩流及其伴随的热液活动,连同湖平面之上Camboriu 组沉积时期形成的玄武岩经受淋滤和风化作用,共同向湖水供给大量溶解的Si,Ca 和Mg 等元素,使湖水呈强碱性。在这种水化学条件下,当湖水蒸发量超过20%时玉髓开始沉淀,局部湖底可形成葡萄状蛋白石薄层(厚度为几毫米至几厘米)[14]。该类沉积型硅化作用形成的硅质薄层在准同生期若受能量扰动发生撕裂并搬运,则形成硅质角砾岩(图9)。
3.2 早期成岩型硅化作用
图9 桑托斯盆地硅化作用成因和分布模式Fig.9 Silicification geneses and distribution models in Santos Basin
MCBRIDE 研究西德克萨斯灰质砾岩的硅化作用时发现,距离不整合面不远的潜水面之下的地层水流经火山灰沉积时可溶解大量硅质,在合适条件下这些硅质选择性交代灰质砾岩[29]。由于适合硅化作用的水化学条件持续时间较短,且温度较低,硅化作用过程快速完成,仅能形成微晶石英和玉髓。与之相似,LIMA 等对坎波斯盆地成岩作用阶段的研究表明,早期成岩阶段硅化作用主要表现为微晶石英和玉髓充填原生孔隙,或交代富Mg 黏土、球粒、叠层石和生物碎屑等[16]。研究区可见纤维束状玉髓或微晶石英交代黏土、球粒(图4b)以及生屑(图4e),为早期成岩型硅化作用产物。
该类硅化作用的硅质来源具有多样性。富Si湖水沿断层等构造薄弱带下渗淋滤,可能为成岩期硅化作用提供硅质。BUSTILLO 等证明黏土矿物埋藏后的溶解和蚀变可向地层流体释放SiO2[8]。同时,TEBOUL 等报道火成岩遭受蚀变后将为地层流体提供SiO2[30]。从研究区来看,桑托斯盆地湖水富Si,Mg 和Ca 等元素,深湖-半深湖和湖泛时期的构造高部位易形成富Mg 黏土层。另外,研究区在ITP组和BVE 组沉积时期发育多期富含SiO2的玄武岩熔岩流,与碳酸盐岩互层沉积(图5)。当地层水与这些黏土层和玄武岩发生水岩反应,流体内SiO2浓度逐渐增大,在合适的物理化学条件下,形成微晶石英或玉髓(图9)。
3.3 岩浆期后热液型硅化作用
在紧邻桑托斯盆地北部的坎波斯盆地,LIMA等根据岩石矿物学和流体包裹体均一温度特征,识别出热液型硅化作用[16]。多种证据表明研究区亦发育热液活动并发生硅化作用,且热液来源与岩浆活动有关。I井4 949.5 m 处流体包裹体均一温度测试结果显示,尽管其均一温度变化范围较大,但整体温度较高(图7)。据现今地温测试显示,I 井包裹体测试所在深度的地温仅为62 ℃,显著低于形成石英的流体温度,证明桑托斯盆地在BVE 组埋藏期发育热液活动。此外,多个研究实例证明,热液作用下形成的石英晶粒较粗,主要为中粗晶,并伴随生成其他热液矿物,如鞍状白云石、粗晶方解石、黄铁矿和天青石等[16,31-33],研究区亦发育粗晶交代石英(图4d,图6a)和相关热液矿物(图4h,图4i)。
M 油田M1 井区3 口钻井均钻遇火成岩,主要包括BVE组中上部的浅成侵入辉绿岩和ITP组内部的溢流玄武岩。与B 井BVE 组上部侵入岩相邻的上、下部碳酸盐岩层段的硅化作用异常强烈,可见中粗晶石英呈胶结和交代特征(图3e,图4d),表明其为热液型硅化作用产物。该强烈硅化作用层段的主要氧化物含量均介于侵入岩段和微弱硅化作用层段之间,表明与侵入岩有关的热液流经碳酸盐岩地层,并与之反应形成硅化作用,显著提高原始碳酸盐岩地层内Na,Mg,Al,S,Ti 和Fe 等元素的含量,且使Ca含量显著降低(图8,表2)。
综上所述,该强烈热液硅化作用层段与侵入岩空间分布关系密切,氧化物含量呈侵入岩和碳酸盐岩围岩混染特征,且流体包裹体均一温度异常高,证明该硅化作用层段为岩浆期后热液所致(图9)。
研究区多口钻井钻遇该套辉绿岩。程涛等根据40Ar/39Ar 定年数据发现,该套辉绿岩形成于晚白垩世漂移期,对应ITP 组和BVE 组埋藏阶段[24]。该阶段辉绿岩完成侵位后,岩浆期后热液沿碳酸盐岩地层内部的断层、裂缝、不整合面等构造薄弱带,以及与这些薄弱带相连通的高基质孔隙带流动,致使局部发生强烈硅化作用。此外,ITP 组和BVE 组沉积时期间歇发育湖内溢流玄武岩,这部分岩浆活动的期后热液也可能导致已沉积碳酸盐岩地层发生硅化作用,而基底玄武岩对应的岩浆活动对于热液型硅化作用则无贡献。
4 硅化作用对储层物性的影响
研究区钻井揭示,沉积型硅化作用较少,其产物主要发生再搬运形成硅质角砾岩,对储层物性影响有限。早期成岩型硅化作用稍多于沉积型硅化作用,但其强度显著弱于岩浆期后热液型硅化作用,相应地对储层物性的影响也较弱。相对来说,岩浆期后热液型硅化作用更为普遍,且强度相对更大,对储层物性具有重要影响。
图10 不同硅化作用程度对储层物性的影响Fig.10 Effects of silicification intensity on reservoir physical properties
图10 中的岩心样品来自B 井BVE 组上部侵入岩之下的角砾岩集中发育段(图3e)。这些角砾岩为侵入岩在侵位过程中破坏围岩地层所形成。该段岩心成岩作用类型多样,包括压实、微弱白云化、方解石胶结等作用,但岩浆期后热液型硅化作用更为显著。由图10 可以看出,硅质含量小于10%时,样品的孔隙度和渗透率分布范围广,有较多样品的孔隙度大于10%,渗透率大于100 mD;当硅质含量大于10%时,样品的孔隙度大部分小于10%,少量为10%~15%,同时渗透率绝大部分小于10 mD。这表明热液型硅化作用程度中-强,可导致储层物性明显变差,对油田开发产生重要影响。造成储层物性变差的原因是,无论石英充填孔隙空间还是交代原始碳酸盐岩组构,均占据原始孔隙空间。且石英倾向首先沿碳酸盐岩颗粒边缘胶结,当相邻碳酸盐岩颗粒边缘的石英胶结物相互接触时,孔喉被封堵,形成孤立的互不连通的孔隙,使之成为低渗透储层(图4c)。
5 结论
根据巴西桑托斯盆地M 油田的构造演化历史和沉积充填背景,综合岩石矿物学、主量元素地球化学、流体包裹体均一温度等数据,以及较强烈硅化作用的平面和纵向分布特征,总结归纳出桑托斯盆地硅化作用包括3种类型,分别为沉积型、早期成岩型和岩浆期后热液型。
沉积型硅化作用的SiO2来源于ITP 组和BVE 组沉积时期间歇发育的水下溢流玄武岩,以及湖平面之上Camboriu 组沉积时期形成的玄武岩遭受淋滤和风化后进入湖水中的SiO2。当SiO2浓度足够大且湖水蒸发量超过20%时,在局部湖底形成沉积型硅质结壳,经再搬运形成硅质角砾。早期成岩型硅化作用的SiO2来源包括富Si 湖水下渗、地层水交代富Mg 黏土以及玄武岩所释放的SiO2。由于适合硅质沉淀的物理化学条件持续时间较短,硅质主要呈微晶石英或纤维状玉髓胶结孔隙及裂缝和交代碳酸盐岩。热液型硅化作用的SiO2源自岩浆期后热液,由于热液温度高,主要形成中粗晶石英,另外伴随形成云母、黄铁矿、鞍状白云石等热液矿物。
沉积型硅化作用对储层物性影响有限,早期成岩型硅化作用对储层物性具有一定影响,而热液型硅化作用更为普遍且强度更大,对储层物性具有重要影响。由于岩浆期后热液倾向沿断层、裂缝、不整合面等构造薄弱带以及与这些薄弱带相连通的高基质孔隙带流动,导致这些场所的硅化作用更为强烈,储层物性显著变差。
通过对M 油田硅化作用成因类型识别及各类型硅化作用对储层物性影响程度的分析,为硅化作用表征奠定基础。后续可利用岩心和薄片标定元素测井,在井上识别热液型硅化作用,结合断层等构造薄弱带分布特征,进一步表征井间硅化作用。