APP下载

Banach空间的U凸系数

2020-11-30王静崔云安

哈尔滨理工大学学报 2020年5期
关键词:常数学报系数

王静 崔云安

摘 要:空间几何常数是空间几何性质的量化,从几何性质的研究到几何常数的计算是从定性到定量的推进。首先引入了一个新的几何常数U凸系数,并研究了它与一致非方和正规结构等几何性质之间的关系,并且通过研究它与常数R(X)的关系,得到Banach空间X弱接近一致光滑,且具有不动点性质。其次利用它与弱正交系数之间的关系给出了Banach空间具有正规结构的充分条件。最后给出了U凸模在lp序列空间的计算。

关键词:U凸系数;Banach空间;一致非方;正规结构;弱正交系数;Garcia-Falset系数;不动点性质

DOI:10.15938/j.jhust.2020.05.022

中图分类号: O177. 3

文献标志码: A

文章编号: 1007-2683(2020)05-0158-06

Abstract:The spatial geometric constant is the quantification of the geometrical properties of space. From the study of geometric properties to the calculation of geometric constants from qualitative to quantitative advancement. Firstly, this paper introduces a new geometric constant U-convex coefficient. Studying its relationship with geometric properties such as uniform non-square and regular structures and by studying its relationship with constants, the Banach space is weakly close to uniform smooth and has fixed point properties. Secondly, Using the relationship between it and weak orthogonal coefficients gives a sufficient condition for Banach spaces to have a regular structure. Finally, the calculation of the convex model in the sequence space is given.

Keywords:U-convex coefficient; Banach space; uniform nonsquare; normal structure; weak orthogonal coefficient; Garcia-Falset coefficient; fixed point properties

0 引 言

1978年Lau ka-sing 在研究Banach空间的切比雪夫集的过程中引入了U性质[1]。此后,Lau ka-sing与Gao Jin 在1991年引入了U空间的概念[2],并刻画了U空间所具有的性质,如U空间是一致非方的,进而也是超自反的,一致凸空间和一致光滑空间是U空间,等等[3-5]。为了更好地刻画U空间的概念,1995年,Gao[6]引入了U凸模的概念。几何常数是研究几何结构的一个重要工具,空间几何常数是空间几何性质的量化,从几何性质的研究到几何常数的计算是从定性到定量的推进。因此探索几何结构和几何常数之间的联系,一直是大家关注的热点问题。

为了方便地刻画U凸模的几何性质与应用。本文引入了一个新的几何常数,U凸系数,研究了它与一致非方、正规结构之间的关系,并且通过研究它与常数R(X)的关系,得到Banach空间X若满足U0(X)<1,则X弱接近一致光滑,且具有不动点性质。其次,利用它与弱正交系数之间的关系给出了Banach空间具有正规结构的充分条件,最后给出了U凸模在lp序列空间的计算。

参 考 文 獻:

[1] LAU K.S. Best Approximation by Closed Set in Banach Space[J]. Approx Theroy, 1978, 23:29.

[2] GAO J, K.S.Lau. On Two Classes of Banach Spaces with Normal Strcture. Studia. Mathematia,1991,99(1):41.

[3] GAO Ji, A New Class of Banach Space with Uniform Normal Structure[J]. Northest Math,2001,17(1):103.

[4] JAMES R C. Uniformly Nonsquare Banach Spaces[J]. Annals of Math,1964(80): 542.

[5] 赵耀培,李全红,董茜. Banach空间的U凸模[J].山东师范大学学报. 2004,19(4):82.

ZHAO Yaopei, LI Quanhong, DONG Xi. Punch of Banach Space [J]. Journal of Shandong Normal University, 2004,194): 82.

[6] JI D H, ZHAN D P. Some Equivalent Representations of Nonsquare Constants and Its Applications[J]. Communications in Mathematical Research, 1999, 15(4): 61.

[7] JESU'S G F, LLORENS F E, MAZCU A N E M. Uniformly Nonsquare Banach Spaces Have the Fixed Point Property for Nonexpansive Mappings[J]. Journal of Functional Analysis, 2006, 233(2): 494.

[8] 左占飛. Banach 空间中的正规结构和广义U凸模[J]. 数学物理学报, 2013, 33(2):327.

ZUO Zhanfei. Normal Structures and Generalized U-convex Modules in Banach Spaces [J]. Journal of Mathematical Physics, 2013, 332): 327.

[9] 崔云安. Banach空间几何理论及应用[M]. 北京:科学出版社, 2011.

[10]W Tingfu, J Donghai, Z Liang. The U-property of Orlicz Sequence Spaces[J]. Chinese Quarterly Journal of Mathematic, 1997, 12(4):55.

[11]GAO Ji, SATIT Saejung. Normal Structure and Some Geometric Parameters Related to the Modulus of U Convexity in Banach Spaces[J]. Mathematica Scientia, 2011, 31(3):1035.

[12]Z Zhanfei, C Yunan. Some Modulus and Normal Structure in Banach Space[J].Journal of Inequalities and Applications, 2009, 2009(1):1.

[13]HUA N. The Fixed Point Theory and the Existence of the Periodic Solution on a Nonlinear Differential Equation[J]. Journal of Applied Mathematics, 2018, 2018(13):1.

[14]吴森林, 张新玲, 计东海. Banach空间中的完备集[J]. 哈尔滨理工大学学报, 2017(2):110.

WU Senlin, ZHANG Xinling, JI Donghai. Complete Set in Banach Space [J]. Journal of Harbin University of Technology, 2017(2):110.

[15]赵亮, 张兴. Banach空间中的广义光滑模[J]. 哈尔滨理工大学学报, 2016, 21(4):112.

ZHAO Liang, ZHANG Xing. Generalized Smooth Modules in Banach Spaces [J]. Journal of Harbin University of Technology, 2016,21(4):112.

[16]赵亮, 王微微, 张兴. Banach空间具有正规结构的判定条件[J]. 哈尔滨理工大学学报, 2018,23(4):144.

ZHAO Liang, WANG Weiwei, Zhang Xing. The Determination Condition of Banach Space with Normal Structure[J]. Journal of Harbin University of Technology, 2018,23(4):144.

[17]崔云安, 郭晶晶. 与不动点性质相关的新常数[J]. 哈尔滨理工大学学报, 2016, 21(2):122.

CUI Yunan, GUO Jingjing. New Constants Related to Fixed Point Properties [J]. Journal of Harbin University of Technology, 2016, 212): 122.

[18]SHANG S, CUI Y, FU Y. Smoothness and Approximative Compactness in Orlicz Function Spaces[J]. Banach Journal of Mathematical Analysis, 2014, 8(1):26.

[19]ZUO Z, CUI Y. A Note on the Modulus of U-convexity and Modulus of W*-convexity[J]. Journal of Inequalities in Pure and Applied Mathematics, 2008, 9(4):1.

[20]S Shaoqiang, C Yunan. 2-Strict Convexity and Continuity of Set-Valued Metric Generalized Inverse in Banach Spaces[J]. Abstract and Applied Analysis, 2014, 2014:384639.

[21]YANG C S, WANG F H. On a Generalized Modulus of Convexity and Uniform Normal Strcture[J]. Acta Mathmatica Scientia,2007,27B(4):838.

猜你喜欢

常数学报系数
非齐次线性微分方程的常数变易法
小小糕点师
苹果屋
嬉水
万有引力常数的测量
Analysis of Characters Shaping in Ring Lardner’s Haircut
Analysis of I Heard the Owl Call My Name from an Intercultural View
形如an+1=Can+D·λn+An+B(A,B,C,D,λ为常数且C≠0,1,λ≠0,1)的数列通项公式的求法
论学报的发行管理创新
《十堰职业技术学院学报》再添殊荣