APP下载

有机固体废弃物生物转化技术研究进展

2020-11-21卢钰升顾文杰徐培智解开治石超宏杨少海

广东农业科学 2020年11期
关键词:还原酶氮素粪污

卢钰升 ,顾文杰 ,徐培智 ,解开治 ,石超宏 ,杨少海

(1.广东省农业科学院农业资源与环境研究所/农业农村部南方植物营养与肥料重点实验室/广东省土壤微生物与耕地保育工程技术研究中心,广东,广州 510640;2.岭南现代农业科学与技术广东省实验室茂名分中心,广东 茂名 525000;3.广东省农业科学院,广东 广州 510640)

有机固体废弃物伴随着人类生产、生活而产生,包括畜禽粪便、作物秸秆、厨余垃圾、城市生活垃圾以及市政污泥等,产生量巨大,对环境造成的压力与日俱增。我国是一个农业大国,农业废弃物产生量极其巨大。数以几十亿吨计的农业废弃物已经成为中国最大的污染源。2016年经国家农业部、住建部的估算,全国每年产生畜禽粪污3.8×109t,综合利用率不到60%;每年产生秸秆近9×108t,未利用的约2×108t;城市污泥产生量达到约3.5×107t,处置率在50%~70%;城市生活垃圾产生量达到1.8×108t。依据2020年第二次全国污染普查公报显示,畜禽粪污化学需氧量的排放量远远超过中国工业废水和生活废水的排放量之和,占比全部排放量的49.8%。随着经济的发展,城市化进程的加快,有机固体废弃物的产生量越来越大。特别是,畜禽粪污成为我国最大的农业环境污染源和有机固体废弃物,且养殖规模仍在持续扩大,排放总量呈现逐年增加的趋势,大量产生和累积所带来的环境风险与资源循环利用等问题尤为突出。有研究测算,我国有6个省市是畜禽粪便污染较重的区域,单位农田面积的畜禽粪便总氮磷负荷超过欧盟的限量标准[1]。近年来,我国陆续发布了畜禽粪污资源化利用的相关指导文件,旨在推动畜禽粪污的综合利用与无害化处理,防治畜禽养殖污染。好氧堆肥技术由于具有无害化、资源化程度高,减量化效果明显,成本低等优点而成为有机固体废弃物无害化和资源化的最有发展潜力的方式之一。众多实践表明,好氧堆肥技术是促进畜禽粪污资源化利用,解决畜禽粪污处理的重要技术途径[2-4]。

好氧堆肥的生物转化过程本质上是一个以碳氮硫(C、N、S)富营养的有机物为底物的生物化学多因素共同影响下,在剧烈的水热气变幅条件下,多种功能微生物协同、竞争或耦合等作用下的复杂过程,最终形成稳定的产物—有机肥。微生物在好氧堆肥过程中扮演着分解者的角色,由于好氧堆肥体系的复杂性,蕴含着复杂多样的微生物群体在好氧堆肥体系的不同时间、空间发挥作用,不同生态位的微生物对不同的物质组分进行着矿化作用,从而实现有机固体废弃物的整体矿化[5]。因此,微生物是决定有机固体废弃物的好氧堆肥过程中生物转化的执行者,起到至关重要的作用[6]。

在好氧堆肥体系中,驱动物质转化的微生物过程会产生大量的氮、硫恶臭气体,造成氮素损失和恶臭环境污染,其中,NH3、N2O的排放损失可达到24%~77.4%、0.2%~9.9%的好氧堆肥初始总氮量[7],N2O作为一种重要的温室效应气体,其温室效应是CO2的296倍。全球每年畜禽粪便好氧堆肥过程产生的N2O更是达到了1.2×106t[8]。恶臭硫气体(硫化氢、甲硫醚、甲硫醇、二甲基二硫等)排放则成为限制好氧堆肥技术发展的关键环境因素,硫素损失可占好氧堆肥初始总硫量的8%~26%,以硫化氢的排放通量最大,其次是甲硫醇、甲硫醚[9]。因此,由功能微生物驱动的氮硫物质转化是好氧堆肥过程的关键物质转化过程,既与最终产品(有机肥)的品质密切相关,也关系到恶臭气体排放等次生环境污染问题,是开展好氧堆肥技术研究的关键科学问题。堆肥微生物主要是受到了堆肥的通气情况、C/N、湿度、温度、pH等因素的影响,针对影响堆肥微生物的因素进行调控,可有效提升好氧堆肥处理效率[7,10-11]。

近年来,随着分子生物学、高通量测序技术等学科的发展,大大促进了对环境中未培养的微生物的研究深度,使我们能够深入探索环境微生物的多样性及其潜在作用机制。本文就好氧堆肥过程中的微生物多样性以及氮硫物质转化过程微生物作用机制进行综合评述,为进一步研究有机固体废弃物生物转化的微生物过程、调控好氧堆肥技术提供科学依据。

1 好氧堆肥过程的微生物多样性

在好氧堆肥的生物转化过程中,有机物质都要经过微生物矿化作用,这就是微生物对物质循环起着关键作用的原因,提升相关功能微生物的代谢活性则能更好地促进有机物质的生物转化作用。由于堆肥过程存在剧烈的温度变化阶段(大致包括升温-高温-降温3个阶段)以及堆体表层-内部的氧气不均一性形成氧气差异,从而引起微生物群落的演替变化,因此时间与空间异质性显著影响着微生物的分布及其生化反应过程[12]。

好氧堆肥中普遍存在细菌、真菌、放线菌等微生物,其数量级可分别达到 109~1010、103~107、105~108CFU/g[13]。在整个堆肥过程中,相对于真菌、放线菌,细菌数量占据着显著的优势,其代谢能力及多样性也更加丰富[14]。

1.1 好氧堆肥过程的细菌群落结构变化

细菌由于具备耐高温、易于利用多种营养物质快速生长等优点,是整个堆肥过程中最主要的降解者。不同堆肥原料的细菌群落结构存在一定的差异,基于细菌高通量测序的研究显示,堆肥过程中主要细菌门类包括了拟杆菌门(Bacteroides)、变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)[15],绿弯菌门(Chloroflexi)、浮霉菌门(Planctomycetes)有时候也会占据优势地位[16-17]。值得注意的是,驱动氮循环中硝化作用的关键微生物主要是变形菌门,驱动反硝化作用的关键微生物包括了变形菌门和厚壁菌门,驱动厌氧氨氧化作用的关键微生物则是浮霉菌门[18-19],而放线菌门能够产生木质纤维素水解酶负责纤维素降解等参与碳素转化过程[15]。

随着堆肥过程的推进,细菌群落结构受到温度、深度、氮素转化过程的影响而发生演替。在牛粪与稻草混合堆肥过程中,拟杆菌门(Bacteroides)和变形菌门(Proteobacteria)是最丰富的门,而放线菌门(Actinobacteria)仅在升温阶段占主导,浮霉菌门(Planctomycetes)数量则在降温期大幅提升,这提示了堆肥后期可能发生厌氧氨氧化作用[16]。而在玉米秸秆堆肥的高温阶段,占据优势的放线菌门(Actinobacteria)则在促进纤维素的降解方面发挥了重要作用[15]。针对堆肥不同深度的菌群结构分析仍不多见,现有研究显示,受堆肥深度显著影响的细菌属水平上物种包括了Planifilum、Thermopolyspora、Truepera、Streptomyces、Pseudoxanthomonas等,且细菌群落多样性差异在高温阶段受到了深度和堆肥时间的影响而在降温阶段则是与堆肥深度显著相关[17]。从以上的菌群结构演替过程可知,堆肥体系中特定微生物种群变化是随着堆肥中物质转化和多种环境因子变化等复杂因素的适应性过程。

1.2 好氧堆肥过程的真菌群落结构变化

真菌是堆肥微生物菌群的重要组成部分,堆肥过程中主要真菌门类包括了子囊菌门(Ascomycota)、担子菌门(Basidiomycota)[20-21]。针对鸡粪好氧堆肥的真菌群落结构时空演替研究中,堆肥升温期主要是酵母菌属(Saccharomycetalessp.),堆肥高温期主要是粪壳菌属(Sordarialessp.)、嗜碱枝顶孢菌(Acremonium alcalophilum) 、酵 母 菌 属 (Saccharomycetalessp.)、Scedosporium minutisporum,堆肥降温期则是Scedosporium minutisporum;在堆肥降温期不同深度的真菌群落相对丰度更均匀,且Scedosporium minutisporum是受到堆肥深度显著影响的真菌群落[21]。同时,温度、水分、pH和氧化还原电位等环境条件均是影响真菌群落结构的重要因子,在对猪粪好氧堆肥的研究显示,温度是影响真菌多样性的重要因素,而氧化还原电位、水分、灰分则影响堆肥中优势真菌的丰度[22-23]。

堆肥中嗜热性真菌的多样性及其纤维素降解活性等方面也受到广泛关注,特别是嗜热性真菌通过分泌各种类型的纤维素分解酶和木质素分解酶来促进有机物的降解,这些具有在高温下保持活性的酶得以帮助嗜热性真菌在堆肥高温期进行代谢活动[24-25],曲霉菌属(Aspergillussp.)、毛壳属(Chaetomiumsp.)、腐质霉属(Humicolasp.)、毛霉属(Mucorsp.)、青霉属(Penicilliumsp.)和嗜热属(Thermomycessp.)是堆肥系统的主要活跃真菌种群[25]。

2 好氧堆肥过程的氮素转化

好氧堆肥过程中氮素转化涉及到若干个生化反应,包括了硝化作用、反硝化作用、厌氧氨氧化作用等(图1)。参与硝化作用和反硝化作用的生物学过程是较早被研究的氮素转化过程[7,26],厌氧氨氧化作用则是较晚发现的氮素转化过程,相关酶基因如氨单加氧酶(amoA)、亚硝酸盐氧化还原酶(nxrAXB)、硝酸盐还原酶(narG)、亚硝酸盐还原酶(nirK、nirS)、氧化亚氮还原酶(nosZ)、联氨合成酶(hzsABC)和联氨氧化酶(hzo)是评估氮素转化和氮素损失情况的重要分子指标[27]。

2.1 硝化作用

图1 好氧堆肥中由微生物驱动的氮硫物质转化途径Fig. 1 Pathway of nitrogen-sulfur conversion driven by microorganisms in aerobic composting

氨氧化作用(Ammonia oxidation)是硝化过程的限速步骤,由氨单加氧酶(amoA)催化NH4+向羟胺(NH2OH)转化,研究参与氨氧化作用的微生物菌群是解析铵硝转化的首要问题,也是影响堆肥中NH3排放的主要生化反应,且氨氧化过程中间产物羟胺的分解是产生N2O的其中一条途径。长期以来,催化氨氧化反应的氨单加氧酶(amoA)被普遍认为是变形菌纲的氨氧化细菌(ammonia-oxidizing bacteria,AOB)[28],研究者发现在海洋、土壤等自然环境中广泛分布着另一类具有氨氧化能力的微生物—氨氧化古菌(ammonia-oxidizing archaea,AOA),AOA的发现,极大的促进了围绕AOA、AOB在不同生态环境中的发挥氨氧化作用的微生物学研究[29],进一步有研究者发现海洋中氨氧化古菌具有产生N2O的能力[30]。利用PCR-DGGE技术研究发现,堆肥中同样存在着大量的AOA,堆体温度、全氮、NO2-和NO3-等堆肥理化指标对AOA群落演替有着显著的影响[31]。Zeng等[32]报道,在堆肥中增加有机物料降低了AOB基因拷贝数,提高了AOA基因拷贝数。堆肥体系中,AOB也受到高温、氧气含量等条件的影响,特别是在高温阶段的活性受到抑制[7],AOB可能在堆肥腐熟阶段发挥作用[33],AOA基因丰度则可能在高温和高浓度NH4+条件下占据优势[34]。这些研究结果表明,在堆肥过程中,AOA、AOB有可能分别在堆肥的不同阶段发挥着氨氧化作用,实现NH4+向NO3+的转化。在对牛粪好氧堆肥中AOA、AOB的微生物群落多样性研究中发现,AOB的系统发育多样性高于AOA,氧气、硝态氮、pH、水分、C/N等环境因子与AOB的多样性有显著的相关性,但与AOA无关。这一研究显示AOB对牛粪堆肥过程中硝化作用更为重要[35]。针对亚硝酸盐氧化还原酶(nxrAXB),是随着氨氧化作用之后负责催化NO2-向NO3-转化的功能酶,在堆肥过程中的研究较少,仅有一些研究结果显示,堆肥中nxrA的基因拷贝数在腐熟阶段呈现上升趋势,且与NO3-的积累有关[33],这与在土壤中的研究结果相一致。

2.2 反硝化作用

参与氮循环反硝化作用的功能基因包括了硝酸盐还原酶(narG)、亚硝酸盐还原酶(nirK/nirS)、一氧化氮还原酶(norB)、氧化亚氮还原酶(nosZ)等,分别负责催化NO3-—NO2-—NO—N2O—N2转化。其中,nirK/nirS、nosZ是最常用于开展反硝化研究的主要分子标记基因。通过PCRDGGE技术和荧光定量PCR技术的分析,堆肥中各个时期普遍存在nirK/nirS、nosZ[36],而研究nirK/nirS在堆肥中反硝化作用的相对贡献率,既是影响温室气体N2O排放的重要因素,也是理解堆肥中氮素转化机制的关键问题。有研究者在堆肥中添加生物炭,发现nirK基因丰度受到抑制,并且N2O的排放显著减少[37]。新近研究结果则更加明确了nirK/nirS的相对贡献率,通过采用选择性抑制剂以及同位素比率法测定了牛粪堆肥中细菌nirK/nirS、真菌nirK的反硝化活性,从而明确了在牛粪堆肥过程中,细菌nirK的反硝化活性是N2O排放的关键功能酶,但参与编码nirK的反硝化细菌种类繁多,仍然需要进一步开展相关研究[38]。而也有研究表明不同堆肥阶段的narG,nirS和nosZ的基因表达与N2排放显著相关[39]。因此,不同堆肥条件下,阐明参与反硝化作用的功能微生物群落结构及其如何影响N2O排放,与堆肥环境因子的作用机制等仍是有待的深入探索。

2.3 厌氧氨氧化作用

厌氧氨氧化(Anaerobic Ammonium Oxidation,Anammox)则是继硝化、反硝化后被发现的由微生物介导的氮素转化过程,由于厌氧氨氧化过程与反硝化过程对NO-2的竞争作用会引起N2O、N2排放的差异,最终将影响堆肥过程的温室气体N2O的排放。厌氧氨氧化细菌普遍存在于自然环境中,主要是在高氮、缺氧或好氧/缺氧的交界面环境条件中生存,在许多生态系统中是主要的氮损失途径[18],不同生态系统中具有不同优势类群的厌氧氨氧化细菌,在堆肥体系中的研究则刚刚起步。

2.3.1 厌氧氨氧化的关键酶基因分子标记研究 参与Anammox过程的微生物组成、关键酶基因、生态分布等基因组学信息被科学家逐步认知[40-42],这主要依赖于分子标记手段进行研究。由于厌氧氨氧化细菌16S rRNA基因序列存在特异性不足的问题,研究者对参与Anammox过程关键功能酶及其编码基因进行深入研究,这包括亚硝酸盐还原酶(Nir),联氨合成酶(HZS)和联氨氧化酶(HZO)及其编码基因(包括了nirS、nirK、hzs、hzo基因)可更好地应用于多样性研究中[43]。但不同功能基因在用于评估厌氧氨氧化细菌的多样性和群落结构的研究中实际效果仍有不同。采用这些功能基因的研究仍处于初步的阶段,研究发现nirS基因并非存在于所有厌氧氨氧化细菌,部分厌氧氨氧化细菌只检测到了nirK基因[44]。现有的研究结果显示,nirS不适于单独作为厌氧氨氧化细菌群落分析的特异性分子标记,而应用hzsA、hzsB、hzo基因获得的分析结果与16S rRNA基因的研究结果具有较好的一致性,且hzs、hzo基因具有更高特异性[43]。

2.3.2 不同生境的厌氧氨氧化菌群结构及其环境影响因子 目前,对厌氧氨氧化过程的研究主要集中在不同类型生境的细菌群落演化,包括海洋、淡水、陆地生态系统等。研究发现,CandidatusScalindua 属通常在海洋生态系统的高盐度环境中占据绝对优势[45],河口生态系统中以C a.Scalindua、Ca. Brocadia、Ca. Kuenenia为主,污水厂、反应器等工程生态系统中以Ca. Brocadia、Ca.Kuenenia和Ca. Jettenia为主,农田土壤中则以Ca.Brocadia、Ca. Kuenenia为主[46]。盐分、氮素养分、温度、溶解氧等均是影响厌氧氨氧化细菌群落结构的重要环境因子。Ca. Scalindua适应高盐度的海洋环境主要是通过表达一种对具有高亲和力的蛋白质[47]。而Ca. Brocadia通常生长于淡水生态环境且倾向于在高浓度的环境中占据优势[48]。针对海洋生态系统的研究发现,与厌氧氨氧化细菌多样性正相关,而有机质含量则是负相关[49]。另外,厌氧氨氧化细菌可以在宽泛的温度中生存,从高寒环境到深海热液,群落结构也会随着温度变化而发生演化。Ca. Kuenenia对温度变化具有很好的适应性,而Ca. Scalindua则能够在80 ℃的环境中生存[50]。

2.3.3 好氧堆肥中厌氧氨氧化菌群研究 在好氧堆肥过程中,由于存在着微环境局部厌氧条件,已有研究发现在牛粪堆肥过程中的检测出厌氧氨氧化细菌,并研究了厌氧氨氧化细菌群落多样性[27]。研究者采用聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE)技术对厌氧氨氧化细菌16S rRNA基因扩进行增,分析了牛粪堆肥过程中厌氧氨氧化细菌多样性,结果显示厌氧氨氧化细菌存在于整个堆肥过程,Ca. Brocadia、Ca. Kuenenia 和Ca.Scalindua3个属为优势菌属,且多样性随着不同堆肥阶段变化,高温期和降温期的多样性较高;与其他生态系统的研究结果不同的是,在堆肥高温期的优势菌属是Ca. Brocadia[27]。而针对不同堆肥原料的好氧堆肥过程中,厌氧氨氧化细菌多样性是否具有一致性,群落结构组成对堆肥环境条件异质性的响应,以及环境因子驱动厌氧氨氧化的作用机制等内容仍有待于进一步的开展。

3 好氧堆肥过程的硫素转化

在硫素代谢方面,堆肥中恶臭硫气体的排放,尽管排放通量较低,但其嗅阈值远远低于NH3[51],成为限制堆肥技术发展的主要次生环境污染问题。硫素生物转化过程(图1)中,如硫化氢在好氧条件下可被硫氧化细菌氧化形成硫酸盐[52],而在厌氧条件下硫酸盐则被还原为H2S等恶臭硫气体[53]。硫氧化细菌普遍存在于自然生境体系中,硫氧化途径,包括:(1)硫化物氧化途径,黄素细胞色素c硫化氢脱氢酶(Fcc)、硫化物醌还原酶(Sqr);(2)单质硫氧化途径,异化亚硫酸盐还原酶(Dsr)、类异二硫醚还原酶(Hdr);(3)硫氧化酶复合体(Sox)等[54]。Luo等[55]对硫氧化酶系统(soxB)、硫化物醌还原酶(sqr)、异化亚硫酸还原酶(dsrA)编码基因的高通量测序分析,揭示了珠江流域中的硫氧化优势种群以及功能基因的多样性,表明硫氧化细菌在水体硫生物化学循环发挥着重要作用。在硫氧化细菌中,硝酸盐还原硫氧化细菌(Nitrate-reducing, sulfide-oxidizing bacteria,NR-SOB)是一类将硝酸盐还原与硫化物氧化同时催化进行的细菌,NR-SOB的多样性和分布特征是研究碳氮硫循环的重要菌群,可指导污水、黑臭水体、污泥治理等诸多氮硫转化调控技术[56-57]。

在好氧堆肥中的硫素转化研究,主要集中在通过添加外源化合物、功能微生物调控堆肥过程,从而实现减少氮素损失和恶臭气体排放。通过添加硫磺可以改善堆肥品质,减少氮素损失。最初,在堆肥中添加具备酸性化学特性的单质元素硫,有效降低了堆肥pH,更有利于堆肥产物的农田应用[58]。进一步研究发现,在堆肥中添加硫磺和硫氧化细菌既降低堆肥pH,且显著提高了堆肥中NH4+、NO3-含量[9]。由此可推测,堆肥中存在着氮硫相互作用,添加硫磺和硫氧化细菌不仅影响了堆肥pH,也影响了氮素转化[59]。利用硝酸盐作为电子受体,对硫酸盐还原起到竞争性抑制作用,在堆肥中添加硝酸盐显著降低恶臭硫气体的产生。近年来,有学者通过添加外源七钼酸铵和亚硝酸盐到好氧堆肥中,有效降低恶臭硫气体(二甲基硫、二甲基二硫)的排放量达92.3%和82.3%[59]。目前,在好氧堆肥中的硫素转化研究中,针对参与好氧堆肥过程中的硫素转化的微生物多样性以及群落结构等研究较少,对参与堆肥恶臭硫气体转化的功能微生物及其动态变化过程也知之甚少,仍有待于进一步开展相关研究工作,以阐明其相关的作用机理。

4 展望

长期以来,畜禽粪污综合利用率低、好氧堆肥处理效率低,其核心问题即是由微生物驱动氮、硫物质转化过程所引起的氮素流失及臭气排放。得益于高通量测序等现代分子生物学技术,科学家可以深入的研究参与好氧堆肥过程的微生物群落特征以及功能微生物的分子机制。然而人们通常只针对某一类微生物、氮素或硫素单一的转化过程开展独立研究,如针对好氧堆肥工艺调控过程中的氮循环硝化、反硝化的功能微生物上的研究等。在现有的研究中,好氧堆肥微生物群落的动态变化及其时空异质性已取得初步的了解,这有助于我们增加对不同堆肥阶段发挥主要作用的优势菌群的认知。同时,已有研究分析了厌氧氨氧化对局部生态系统中氮循环的贡献率,但对于好氧堆肥中的厌氧氨氧化过程则知之甚少,仅有的研究证实了堆肥过程中存在厌氧氨氧化作用。在硫素转化过程的研究中,也已证实了氮硫转化的关联性,但对堆肥过程中的氮硫相互作用机理则少有深入的研究,针对氮硫作用的研究主要集中在污水、黑臭水体、污泥治理等领域。

因此,在现有研究的基础上,从不同堆肥物料的氮硫生物转化过程出发,利用基因组学与理化分析相结合的技术手段,对畜禽粪污好氧堆肥工艺下的氮硫转化动态、气体排放规律、生物化学机理等进行深入研究,阐明相关功能微生物的群落特征及功能基因表达情况,既可以从微生物尺度提升对堆肥过程中物质转化规律的认识,也有利于揭示整个堆肥过程中影响氮硫生物转化的环境因子(图1)。此外,可同时利用多组学、同位素标记技术等验证各个氮硫生物转化过程之间的耦合作用及相关功能微生物种群在物质循环中的贡献率,为提升畜禽粪污高效生物转化技术工艺、恶臭气体减排提供坚实的科学基础。

当前我国正处于农业转型升级的关键时期,积极推进农业绿色发展,减少农药、化肥使用量,促进农膜、秸秆、畜禽粪污等有机废弃物资源循环再利用,是保护农业生态环境和生态文明建设的重要手段。据联合国粮食及农业组织(FAO)的统计数据显示,与2018年相比,到2030年我国畜禽粪污氮素排放总量将达到837万t,增长44.7%。畜禽粪污既是污染物,也是宝贵的养分资源,针对畜禽粪污与日俱增的环境污染压力,加强畜禽粪污生物转化技术的研究与应用,促进好氧堆肥技术发展,使物质和能量得到高效的循环利用,减少废弃物排放与化肥投入,有利于我国生态循环农业、农业现代化和可持续发展。

猜你喜欢

还原酶氮素粪污
不同产量潜力小麦品种氮素积累与转运的差异
畜禽粪污综合利用现状 存在问题及对策
硅基膜材缓控释肥在红壤中的氮素释放特征研究
不同生育期大豆品种氮素积累特性研究
施氮水平对油菜生育后期氮素吸收积累和分配的影响
我国大型畜禽规模养殖场全部配套粪污处理设施装备
猪场每天利用粪污发电1.8万度
四氢叶酸还原酶基因多态性与冠心病严重程度的相关性
规模猪场不同粪污处理模式和利用效果对比分析
亚硝酸盐降解进展研究