小学数学中基于“问题课堂”备课的探究与实践
2020-11-18樊莹莹
樊莹莹
《义务教育课程标准(2011年版)》中明确提出:“数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。”因此,笔者在实际教学中尝试打造“问题教学”课堂,在备课时以“备学”为核心,通过设计跟教学内容相关的数学问题引领,让学生在探究中解决问题,直至建模,以培养学生的思维方式和应对未知问题的能力。
一、问题的提出从“随意性”走向“本源性”
“本源性问题”即数学教学内容里最根本的观点、最朴素的思想。从学生的发展看数学的学习,需要从分析数学找出数学知识的原型、回归数学找出数学知识的发生与发展。因此,教师提出“本源性”问题时既要考虑数学内容最根本的观点,又要考虑数学活动最朴素的思想;既要能切入到学生数学知识学习的出发点,又要能让学生把握数学知识的“前世今生”;既要能让学生形成“数学追问”的思维方式,又要能使他们形成学习数学的方法论。
心理学家维果茨基最著名的理论——“最近发展区”理论表明:教师抛出跟知识体系或思想方法或核心概念相关度高的“本源性”问题,可以让学生走进数学、拉近与抽象数学概念之间的距离。
以《用分数表示可能性的大小》一课为例
教师:今天老师带了3种颜色的弹力球,其中红色的弹力球作为礼品,以抽奖的形式送给幸运的同学。
教师出示三种抽奖箱(每个里面都放10个大小一样、颜色不同的弹力球),大家先独立思考,再在小组里交流,哪个抽奖箱里最有可能抽到红色球?
(学生思考后先小组交流再全班交流。)
教师:同样的10个球放在箱子里,摸出红球的可能性却有大有小,这就是我们这节课要研究的內容(揭示课题)接着,整节课围绕“摸球”这个游戏展开,通过变化“球的数量”和“球的颜色”其中一个量或两个量来计算可能性的大小,并思考:“当‘球的数量(球的颜色)不变另一个发生变化时,对摸到红球的可能性会有怎样的影响?当‘球的数量和‘球的颜色都变了,对摸到红球的可能性又会有怎样的影响呢?”
解决问题不应仅是“就事论事”,这节课中,教师不断追问这些条件的变化会对可能性产生哪些影响,学生在操作中重启涵盖的思想并理解其中的数学思想,在思辨中突破学习的难点并习得知识,真正实现了“教得轻松,学得顺利”!
二、问题的呈现从“分散式”走向“学习单”
“问题课堂”要想真正实现学生能深度学习,教师在备课时不是拘泥于现成的教参,而是在整合教学内容、取舍探究问题中,变灌输知识为自主探究学习,因此,教师要改变问题的呈现方式。
基于“问题课堂”的小数教学用“学习单”的方式呈现问题,用递进式或并列式的问题串,用由易到难的问题串,用本源性、纲领式的问题引导学习,让学生经历“解决具体问题——抽象出数学模型——解释数学模型——用模型解决同类问题”的过程,从而完善数学思维。
学习单是问题呈现的有效载体,学习单上的问题应触及数学知识的核心知识点。这个“核心”,可以是具有引导性的知识与技能,也可以是具有开发性的数学基本活动经验的积淀。上面这个学习单上的问题串关注了不同层次的学生,用少而精的问题串使不同层次的学生均能体验成功,获得发展。这种用有价值的问题串引领的课堂教学设计,能够使问题聚焦,板块清晰,真正让学生“在做中积累数学经验”,将“冗繁”“紧张”“肤浅”“杂乱”的小学数学课堂变得“凝练”“从容”“深刻”“清晰”。
总之,“问题课堂”的备课要将“备教”转为“备学”,以此为教学准备充分的信息与能力,为学生的学习提供自主的时间与空间,让有效的“学”真正“发乎于情,探究于理”,让课堂焕发无尽的生命力!