APP下载

大强度间歇训练与脑部功能

2020-11-09李天义徐琳

当代体育科技 2020年25期
关键词:海马

李天义 徐琳

摘  要:身体活动是提高人体生理适应的有效方法。但何种类型的运动,以及多大训练量能够产生最佳化的身体适应仍存在争议。当前,尽管大强度间歇训练存在较高的损伤风险,但鉴于大强度的间歇训练的独特性,能够获得更多的健康上的益处,也已受到广泛的关注。研究表明,大强度间歇练习可能更为有效地提高心血管和肌肉骨骼系统,以及脑部功能。充分认识大强度间歇运动与脑部功能之间的关系和适应机制,可为最佳化健身计划的制定,提供有用的信息。

關键词:大强度间歇训练  脑部功能  海马  最佳化适应

中图分类号:G804                            文献标识码:A                  文章编号:2095-2813(2020)09(a)-0017-05

Abstract: Physical activity is an effective way to improve the physiological adaptation of the human body. What type of exercise, and how much of it, can produce optimal physical fitness, is still a matter of debate. At present, despite the high-intensity interval training has a high risk of injury, but in view of the uniqueness of the high-intensity interval training, more health benefits can be obtained, which has received widespread attention. Studies have shown that high-intensity interval exercises may be more effective in improving cardiovascular and musculoskeletal systems, as well as brain function. A full understanding of the relationship between high-intensity interval exercise and brain function and its adaptive mechanism can provide useful information for the formulation of optimal fitness plan.

Key Words: High-intensity interval training; Brain functions; Hippocampus; Optimized adaptation

身体活动和运动训练是提高人体生理适应的有效方法,包括心血管、肌肉骨骼系统及脑部功能。前期研究表明运动可以改善心血管和骨骼肌适应的各种标志物[1-3],产生特定生物学适应[4]。另外,还可能会调节中枢神经系统方面的适应[5],例如促进成人海马神经再生,这一适应与海马相关的空间学习和记忆功能有关。运动可增强突触的传递和可塑性[5]。尽管前期的研究已经证明运动与中枢和外周的变化有关,但何种类型的运动,以及多大训练量能够产生最佳化的身体适应仍存在争议。当前,尽管大强度间歇训练(high-intensity interval training,HIIT)存在较高的损伤风险,但鉴于大强度的间歇训练的独特性[6,7],能够获得更多的健康上的益处,也已受到广泛的关注。

1  大强度间歇训练的特点和生理适应

HIIT训练设计涉及到最大努力的运动,通常为大约20~90s,然后嵌入短暂的休息或低强度恢复。锻炼通常不到30min,但有些持续时间更长。其目标是充分恢复,以至于受训者在下一个训练间隔中,能够再次尽最大的努力[6,7]。因此,HIIT练习可以根据低强度恢复的时间而变化,而不是高强度的时间。

HIIT是可变的,这种形式的训练引起的特定生理适应性由多种因素决定,包括强度、持续时间和练习次数,以及间隔恢复期间的持续时间、运动模式。研究认为HIIT如同耐力练习一样,可有效地提高有氧能力、线粒体脂肪酸氧化和心血管系统的能力[8-11]。研究发现,当能量消耗相当时,HIIT可替代传统耐力训练方案,与传统耐力练习一样,在健康个体和患病人群中可诱导一系列相似甚至更优的生理适应、运动表现和健康相关标志物[12]。

此外,研究认为尽管时间和总运动量减少,但HIIT可诱导与中等强度连续训练类似的生理重塑[13]。低训练量HIIT研究,通常使用的最常见运动模型是Wingate测试,涉及到30s“全力以赴”以及外部负荷。受试者通常完成4~6次,恢复间隔约4min,在持续约20min的训练期间,总共有2~3min的剧烈运动。这种类型的HIIT训练只需6次,2周总共大约15min的全面运动,可增加了骨骼肌氧化能力,主要反映在线粒体酶的最大活性和/或蛋白质含量上,相当于传统的耐力训练[14]。

2  大强度间歇训练潜在的分子机制

运动方式与运动潜在分子适应机制有关[15-17]。HIIT诱导骨骼肌代谢分子适应机制业已受到关注。考虑到HIIT可增加线粒体能力的潜力。另外,促进线粒体生物发生重要分子是过氧化物酶体增殖物激活受体γ共激活因子(PGC-1α)。它是一种可诱导的共激活因子,其调节核和线粒体基因组中编码的线粒体蛋白的协调表达[18]。因此,研究主要集中在PGC-1α信号途径[19]。

[7] 马继政,张仁祥,谷波,等.大强度间歇训练研究与进展[J].南京体育学院学报:自然科学版,2013,12(4):8-14.

[8] MacInnis MJ,Gibala MJ.Physiological adaptations to interval training and the role of exercise intensity[J].J Physiol,2017,595(9):2915-2930.

[9] 马继政,牛洁.大强度间歇训练心肌细胞分子适应机制[J].体育科技文献通报,2010,18(3):33-34.

[10]马继政,张仁祥.大强度间歇运动骨骼肌分子适应机制[J].体育科技文献通报,2010,18(2):39-41.

[11]胡斐,徐盛嘉,沈铭彬,等.大强度的无氧间歇练习、有氧耐力练习及其组合练习的次序对恢复期心脏自主神经功能的影响[J].体育科研,2017,38(6):87-92.

[12]Wisl?ff U,St?ylen A,Loennechen JP,et al.Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients:a randomized study[J].Circulation,2007,115(24):3086-3094.

[13]Gibala MJ,McGee SL.Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain[J].Exerc Sport Sci Rev,2008,36(2):58-63.

[14]Burgomaster KA,Howarth KR,Phillips SM,et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans[J].J Physiol,2008,586(1):151-160.

[15]马继政.运动方式与运动性磷酸化蛋白[J].山西师大体育学院学报,2009,24(4):133-136.

[16]马继政,孙飙.运动中骨骼肌蛋白周转率的变化和调节机制[J].体育科技,2010,31(2):82-86.

[17]马继政.运动、转录因子和线粒体的生物合成[J].四川体育科学,2010(1):17-20.

[18]Lin J,Handschin C,Spiegelman BM.Metabolic control through the PGC-1 family of transcription coactivators[J].Cell Metab,2005,1(6):361-370.

[19]馬继政.PGC-1α与运动能力[J].南京体育学院学报:自然科学版,2008(1):1-3.

[20]Mathai AS,Bonen A,Benton CR,et al.Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle[J].J Appl Physiol (1985),2008,105(4):1098-1105.

[21]Calvo JA,Daniels TG,Wang X,et al.Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake[J].J Appl Physiol (1985),2008, 104(5):1304-1312.

[22]Puigserver P,Rhee J,Lin J,et al.Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1[J].Mol Cell, 2001,8(5):971-982.

[23]马继政,孙飙.AMPK调节运动中骨骼肌细胞代谢研究进展[J].中国运动医学杂志,2010,29(5):611-614.

[24]Geng T,Li P,Okutsu M,et al.PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle[J].Am J Physiol Cell Physiol,2010,298(3):C572-579.

[25]Little JP,Safdar A,Bishop D,et al.An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle[J].Am J Physiol Regul Integr Comp Physiol, 2011,300(6):R1303-1310.

[26]Kirby TJ,McCarthy JJ.MicroRNAs in skeletal muscle biology and exercise adaptation[J].Free Radic Biol Med,2013,64:95-105.

[27]马继政,张爱军.MicroRNAs在骨骼肌分化、发育中的作用[J].河北体育学院学报,2010,24(6):70-73.

[28]马继政,孙飙.运动和MicroRNAs[J].体育科研,2013,34(6):65-68.

[29]Cui SF,Li W,Niu J,et al.Acute responses of circulating microRNAs to low-volume sprint interval cycling[J].Front Physiol,2015(6):311.

[30]王晓磊,王金之,徐盛嘉,等.18.5km不同强度负重行军对健康男性青年执行功能的影响[J].军事体育学报,2017,36(3):1-4.

[31]王晓磊,徐盛嘉,王金之,等.不同形式运动对青年男性执行功能的影响研究[J].体育科技,2018,39(1):3-5.

[32]Lee MC,Okamoto M,Liu YF,et al.Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling[J].J Appl Physiol(1985), 2012,113(8):1260-1266.

[33]Lee M,Soya H.Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus[J].J Exerc Nutrition Biochem, 2017,21(4):52-57.

[34]Lee MC,Rakwal R,Shibato J,et al.DNA microarray-based analysis of voluntary resistance wheel running reveals noveltranscriptome leading robust hippocampal plasticity[J].Physiol Rep,2014,2(11):e12206.

[35]Legerlotz K,Elliott B,Guillemin B,et al.Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats[J].Exp Physiol, 2008,93(6):754-762.

[36]Neeper SA,Gómez-Pinilla F,Choi J,et al. Exercise and brain neurotrophins[J].Nature,1995,373(6510):109

[37]Pencea V,Bingaman KD,Wiegand SJ,et al.Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus[J].J Neurosci,2001,21(17):6706-6717.

[38]Hebisz Paulina,Hebisz Rafa?,Murawska-Cia?owicz Eugenia,et al.Changes in exercise capacity and serum BDNF following long-term sprint interval training in well-trained cyclists[J].Appl Physiol Nutr Metab,2019,44(5):499-506.

[39]Vaynman S,Ying Z,Gomez-Pinilla F.Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J].Eur J Neurosci,2004 (10):2580-2590.

[40]Li Y,Luikart BW,Birnbaum S,et al.TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment[J].Neuron,2008,59(3):399-412.

[41]Luo Lu,Li Congqin,Deng Yu,et al.High-Intensity Interval Training on Neuroplasticity, Balance between Brain-Derived Neurotrophic Factor and Precursor Brain-Derived Neurotrophic Factor in Poststroke Depression Rats[J].J Stroke Cerebrovasc Dis,2019,28(3):672-682.

[42]唐浩軒.急性高强度间歇训练与中等强度持续训练对情绪体验与执行功能的影响[D].武汉体育学院,2019.

猜你喜欢

海马
海马
海马
海马是由爸爸的肚里出世
海龙与海马
萌萌哒之长满痘痘的豆丁海马
捕猎高手
识动物:奇怪的海马
最佳操控奖 海马3运动版