23种中草药体外抗菌活性筛选
2020-11-02奠佐红左国营吴玉霞张铁焕
奠佐红 左国营 吴玉霞 张铁焕
摘 要:為研究23种中草药的80%乙醇提取物对4种临床常见致病菌的体外抗菌活性,该研究用琼脂扩散法测定抑菌圈直径,微量肉汤培养基倍比稀释法测定最低抑菌浓度(minimum inhibitory concentration,MIC)和最低杀菌浓度(minimum bactericidal/fungicidal concentration,MBC/MFC)。结果表明:滇龙胆草、金丝梅、溪黄草等16种提取物对金黄色葡萄球菌的MIC/MBC值在0.19~3.12 mg·mL-1之间,有很强的抑菌活性。头花蓼、淡竹叶、半枝莲等14种提取物对铜绿假单胞菌的MIC/MBC值在1.56~6.25 mg·mL-1之间,有较强的抑菌活性。除槐角外,其余提取物对大肠埃希菌的MIC/MBC值均在3.12~12.5 mg·mL-1之间,有较强的抑菌活性。黄藤、藿香提取物对白色念珠菌的MIC/MFC值在0.78~6.25 mg·mL-1之间,有较强的抑菌活性;滇龙胆草、金丝梅、水杨梅、苦参、胡椒、赶黄草、荜菝、淡竹叶提取物对白色念珠菌的MIC/MFC值在6.25~12.5 mg·mL-1之间,也具有一定抑菌活性。因此,所选中草药的抑菌效果均较好,大部分均具有广谱抗菌活性。其中,藿香、黄藤的提取物对白色念珠菌抑菌活性较强,金丝梅、水杨梅、仙鹤草、苦参、赶黄草、溪黄草的提取物对金黄色葡萄球菌抑菌活性很强,这几种中草药可为进一步追踪其活性单体化合物和作用机制提供一定的参考。
关键词:中草药提取物,金黄色葡萄球菌,铜绿假单胞菌,大肠埃希菌,白色念珠菌,体外抗菌
中图分类号:R285
文献标识码:A
文章编号:1000-3142(2020)09-1357-11
Abstract:In this study,we selected 80% ethanol extract from 23 Chinese herbal medicine extracts to resist the activity of four common pathogens in vitro. The diameter of the zone of inhibition was determined by agar diffusion method,and the minimum inhibitory concentration (MIC) and the minimum bactericidal/fungicidal concentration (MBC/MFC) were determined by micro-broth culture. The results were as follows:MIC/MBC values of 16 kinds of extracts Gentiana rigescens,Hypericum patulum and Rabdosia serra were 0.19 to 3.12 mg·mL-1,which had very strong antibacterial activities to Staphylococcus accreus. The MIC/MBC values of 14 kinds of extracts Polygonum capitatum,Lophatherum gracile and Scutellaria barbata were 1.56 to 6.25 mg·mL-1,which had good antibacterial activities to Pseudomonas aeruginosa. In addition to the Sophora japonica extract,the MIC/MBC values of other extracts were 3.12 to 12.5 mg·mL-1,which had good antibacterial activities to Escherichia coli. The MIC/MFC values of Agastache rugosa and Daemonorops margaritae extracts were 0.78 to 6.25 mg·mL-1,which had strong antibacterial activities to Candida albicans; The MIC/MFC value of Gentiana rigescens,Hypericum patulum,Geumja ponicum,Sophora flavescens,Piper nigrum,Penthorum chinense,Piper longum and Lophatherum gracile extracts were 6.25 to 12.5 mg·mL-1,which also had certain antibacterial activities to Candida albicans. Therefore,these selected Chinese herbal medicines had good antibacterial effects,and most of them had broad-spectrum antibacterial activities,but Agastache rugosa and Daemonorops margaritae,which had strong antibacterial activity for Candida albicans,and other Chinese herbal medicines had strong antibacterial activity for Staphylococcus aureus,such as Hypericum patulum,Geumja ponicum,Agrimonia pilosa,Sophora flavescens,Penthorum chinense,Rabdosia serra. Above several kinds of Chinese herbal medicines can provide some reference for further reachering of its active monomer compounds and mechanism of action.
1.2.2 测定耐药菌株的耐药谱 药敏试验用K-B纸片扩散法(Kirby-Bauer法),药敏结果判定参照CLSI(Clinical Laboratory Standards Institute)2017版(CLSI:M02-A12,2017)。
1.2.3 药液和菌液制备 药液:精确称取中草药提取物50 mg于 EP管中,加10% DMSO作助溶剂溶解,用无菌生理盐水配成浓度为50 mg·mL-1的药液。菌液:将细菌、真菌菌种分别接种于营养琼脂培养基、沙氏琼脂培养基上,在35 ℃恒温培养箱培养24 h。细菌用0.5号麦氏比浊管配成浓度1.5×108 CFU·mL-1,真菌用细胞计数板配成浓度1.0×106 CFU·mL-1,用于菌株药敏测试和琼脂扩散法测抑菌圈。将细菌稀释300倍成浓度5×105 CFU·mL-1,真菌稀释100倍成浓度1.0×104 CFU·mL-1,用于MIC/MB(F)C的测定。
1.2.4 琼脂打孔法测定抑菌圈 用直径6 mm的无菌打孔器将琼脂平板每块打孔5个备用,用无菌棉签蘸取浓度为1.5×108 CFU·mL-1的标准细菌菌液均匀涂布在营养琼脂平板培养基上,浓度为1.0×106 CFU·mL-1的标准真菌菌液均匀涂布于沙氏琼脂培养基上,每孔加入浓度为50 mg·mL-1的药液100 μL,药液不得溢出。将琼脂平板置于35 ℃恒温培养箱中培养24 h,用卡尺测量抑菌圈,平行3次实验,取平均值。根据药理学方法判定:抑菌圈直径d<10 mm为细菌对药物表现耐药和无抑菌作用;d=10 mm为轻度敏感;11 mm≤d≤15 mm为中度敏感;d≥16 mm为高度敏感。
1.2.5 MIC和MBC/MFC的测定 MIC的测定:按照CLSI2017版指南进行(CLSI:M07-A10,2017),采用微量肉汤倍比稀释法。MBC/MFC的测定:确定MIC后,将MIC孔前3~5孔的液体培养基用无菌接种环接种于琼脂平板培养基上(细菌用营养琼脂培养基,真菌用沙氏琼脂培养基),置于35 ℃恒温培养箱中培养24 h。采用活菌计数法检查琼脂平板上的菌落数,平均数小于5个的药物浓度则为该药物的MBC/MFC,平行实验3次,取平均值(胡欢等,2018)。
2 结果与分析
2.1 耐药菌株耐药谱测定结果
主要药敏测试结果如表1,表2,表3所示。
2.2 抑菌圈的测定结果
抑菌圈测试结果如表4所示,对标准SA,仙鹤草、头花蓼、溪黄草、藿香、赶黄草提取物抑菌圈直径大于16 mm,表现为高度敏感,槐角、滇龙胆草、金丝梅、马鞭草、何首乌、水杨梅、苦参、萝芙木提取物抑菌圈直径11 mm≤d≤15 mm,表现为中度敏感; 对标准EC和PA,滇龙胆草、 金丝梅、 何首乌、水杨梅、仙鹤草、苦参、赶黄草、淡竹叶、藿香、半枝莲提取物抑菌圈直径11 mm≤d≤15 mm,为中度敏感;对标准CA,藿香、金丝梅、淡竹叶、黄藤提取物抑菌圈直径11 mm≤d≤15 mm,表现为中度敏感;其余中草药提取物表现为轻度敏感,耐药或无抑菌作用。
2.3 MIC、MB(F)C的测定结果
空白对照组无菌生长,证明实验无污染,操作规范,阴性对照组(DMSO 10% + 培养液)对菌无抑制作用,数据可靠。对标准SA和MRSA,如表5,表6所示,滇龙胆草、金丝梅、马鞭草、何首乌、水杨梅、仙鹤草、苦参、藿香、头花蓼、赶黄草、溪黄草、半枝莲、啤酒花、淡竹叶、响铃草、密蒙花16种提取物的MIC/MBC值在0.19~3.12 mg·mL-1之间,有很强的抑菌活性;萝芙木、槐角、黄藤、金莲花、胡椒、钩藤、荜菝7种提取物的MIC/MBC值在6.25~12.5 mg·mL-1之间,有一定抑菌活性。对标准PA和耐药PA,如表5,表7所示,萝芙木、滇龙胆草、黄藤、金丝梅、马鞭草、何首乌、水杨梅、响铃草、仙鹤草、苦参、藿香、头花蓼、淡竹叶、半枝莲14种提取物的MIC/MBC值在1.56~6.25 mg·mL-1之间,有较强的抑菌活性;除荜菝提取物的MIC/MBC值在12.5 mg·mL-1時无抑菌活性,其余提取物的MIC/MBC值在6.25~12.5 mg·mL-1之间,有一定抑菌活性。对标准EC,如表5所示,除槐角提取物外,其余提取物的MIC/MBC值均在3.12~12.5 mg·mL-1之间,有较强抑菌活性。对标准CA和耐药CA,如表5,表8所示,黄藤、藿香提取物的MIC/MFC值在0.78~6.25 mg·mL-1之间,有较强的抑菌活性;滇龙胆草、金丝梅、水杨梅、苦参、胡椒、赶黄草、荜菝、淡竹叶提取物的MIC/MFC值在6.25~12.5 mg·mL-1之间,有一定抑菌活性。
3 讨论
实验结果表明,仙鹤草、金丝梅等大部分提取物对标准菌株和耐药菌株都有一定抑菌活性。其中,滇龙胆草、黄藤、金丝梅、水杨梅、苦参、藿香、胡椒、赶黄草、荜菝、淡竹叶提取物对金黄色葡萄球菌、大肠埃希菌、铜绿假单胞菌、白色念珠菌都有抑菌作用,显示出广谱抑菌活性。 实验研究发现槐角、金莲花等提取物在SA、EC、PA的抑菌圈测试中显示无明显抑菌圈,但在测试MIC/MBC时却显示有一定的抑菌活性,MIC/MBC值主要集中在6.25~12.5 mg·mL-1,原因可能是在抑菌圈测试时菌液是涂布在琼脂表面,药液是加在琼脂孔中,以孔为中心向周围扩散,但药液始终只与菌液的底面层接触,并且药液中各成分的性质不同,可能导致各成分在琼脂中的扩散距离不同,这就可能影响各成分与菌液接触的底面积范围,从而影响抑菌圈的大小,所以,抑菌圈不明显不足已证明无抑菌活性;而在测试MIC/MBC时药液与菌液都加在肉汤中混合均匀,使得药液中各成分都能更全面的与菌液接触,则各成分的抑菌作用就可能更充分地发挥出来。在测定金黄色葡萄球菌MIC/MBC值时,发现啤酒花、密蒙花、溪黄草等提取物对个别MRSA菌株(如MRSA 8、23、166)的抑菌作用较标准菌株好,原因可能是虽同为金黄色葡萄球菌,但不同菌株的耐药机制不一样,并且耐药机制并不是完全独立的,可能存在多重性(阮贤妹和史道华,2015),而且中草药的成分、结构复杂,作用机制多(如:抑制菌体蛋白质和核酸的合成;破坏菌体的细胞膜、细胞壁、细胞结构;抑制菌体内酶活性等),也可能存在多重性(朴喜航和艾红佳,2017)。
在耐药菌产生速度紧追抗生素研发速度的今天,研究者们发现了噬菌体、抗菌肽、益生菌、中草药单体等对抗耐药菌的新物质(尹业师等,2018)。其中,中草药单体与抗生素联合抑菌是一种比较有效的方式,槐属二氢黄酮G与氨苄西林联合对抗MRSA表现为协同作用(Sato et al.,1995);没食子酸与甲氧西林、氨苄西林联合对抗MRSA,没食子酸通过直接与细菌细胞壁上的肽聚糖结合,干扰细胞壁的完整性,从而使抗生素对MRSA的活性增强(Zhao et al.,2001);胡椒碱与庆大霉素联合对抗MRSA表现为协同作用(Khameneh et al.,2015);Psychorubrin与氯霉素联合对抗MRSA表现为相加作用(Lemos et al.,2018)。虽然抗生素与中草药单体联合体外抑菌试验较联合体内抑菌试验研究多,但难在体外试验中复制出体内试验中两药联合对机体与菌体的双重作用(朴喜航和艾红佳,2017),而且在体外试验中有高度抑菌活性的中草药在体内试验中却达不到有效血药浓度或首过效应明显而使抑菌作用降低或无效(李晶等,2009),那么联合用药也可能存在类似的问题。所以,在抗生素与中草药单体联合体内抑菌方面应加深药代动力学、作用机制等方面的研究,为联合体内抑菌方案提供可靠的依据。
该研究中的中草药提取物都具有一定的抑菌活性,尤其是对白色念珠菌抑菌活性较强的藿香、黄藤和对MRSA抑菌活性很强的金丝梅、水杨梅、仙鹤草、苦参、赶黄草、溪黄草这几种中草药提取物可进一步追踪分离得到尚未研究过的有抑菌作用的中草药单体,结合体内和体外试验,研究其单用和其他药物联合应用的抑菌效果和作用机制,使具有高度抑菌活性的中草药单体和联合方案能真正发挥疗效,并希望能缩短耐药菌治疗的疗程。
参考文献:
HU H,ZUO GY,ZHANG ZP,2018. Screening of antimicrobial activities of 36 Chinese herbal medicines in vitro [J]. Guihaia,38(4):428-440. [胡欢,左国营,张泽萍,2018. 36种中药材体外抗菌活性筛选研究 [J]. 广西植物,38(4):428-440.]
HUANG M,TANG YQ,LUO J,et al.,2018. Antimicrobial resistance of Chinese herbal medicine [J]. Chin J Exp Trad Med Form,24(23):218-224. [黄梅,谭余庆,罗俊,等,2018. 植物类中药抗细菌耐药性的研究进展 [J]. 中国实验方剂学杂志,24(23):218-224.]
KHAMENEH B,IRANSHAHY M,GHANDADI M,et al.,2015. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus [J]. Drug Dev Ind Pharm,41(6):989.
LEMOS A,CAMPOS LM,MELO L,et al.,2018. Antibacterial and antibiofilm activities of psychorubrin,a pyranonaphthoquinone isolated from Mitracarpus frigidus (Rubiaceae) [J]. Front Microbiol,9:724.
LI J,JING L,LIU Y,et al.,2009. Prospect and research progression on Chinese materia with antibacterial function in China [J]. Nei Mongol J Trad Chin Med,28(24):86. [李晶,景立,刘洋,等,2009. 国内抗菌中药的研究进展及前景 [J]. 内蒙古中医药,28(24):86.]
LIU YL,LI XF,BAN XX,et al.,2015. The review on active antibacterial ingredients of Chinese medicine and the antibacterial mechanism [J]. Glob Trad Chin Med,8(8):1012-1017. [刘云宁,李小凤,班旭霞,等,2015. 中药抗菌成分及其抗菌機制的研究进展 [J]. 环球中医药,8(8):1012-1017.]
LIU H,ZHANG GL,XU SY,et al.,2001. Research status of antibiotic resistance of bacteria at China and abroad [J]. Shandong Poul,(2):32-34. [刘辉,张供领,许胜勇,等,2001. 细菌对抗生素耐药性的国内外研究现状 [J]. 山东家禽,(2):32-34.]
MENDES RE,DESHPANDE LM,JONES RN,2014. Linezolid update:Stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms [J]. Drug Resist Updat,17(1-2):1-12.
PU XH,AI HJ,2017. Research progress on antibacterial ingredients and antibacterial mechanism of traditional Chinese medicine [J]. J Jilin Med Univ,38(6):445-447. [朴喜航,艾红佳,2017. 中药抗菌成分及其抗菌機制的研究进展 [J]. 吉林医药学院学报,38(6):445-447.]
RUANG XM,SHI DH,2015. The antibacterial effects of herb monomers:Research advances [J]. Chin J Microecol,27(2):244-248. [阮贤妹,史道华,2015. 中药有效成分及单体抗菌作用机制的研究进展 [J]. 中国微生态学杂志,27(2):244-248.]
SATO M,TSUCHIYA H,TAKASE I,et al.,1995. Antibacterial activity of flavanone isolated from Sophora exigua against methicillin-resistant Staphylococcus aureus and its combination with antibiotics [J]. Phytoth Res,9(7):509-512.
SHARMA C,ROKANA N,CHANDRA M,et al.,2017. Antimicrobial resistance:Its surveillance,impact,and alternative management strategies in dairy animals [J]. Front Vet Sci,4:237.
TIWARI HK,SEN MR,2006. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) form a tertiary care hospital from northern part of India [J]. BMC Infect,6(1):1-6.
WEI WR,2018. On the abuse of antibiotics and its countermeasures in China [J] Chem Enterp Manag,(3):92. [魏维芮,2018. 浅谈我国抗生素的滥用问题及对策 [J]. 化工管理,(3):92.]
XINHUANET,2016. The first “superbugs” infection in America:All antibiotics were useless [EB/OL].(2016-05-27) [2017-07-10].http://news. mydrivers.com/1/484/484270.htm. [新华网,2016. 美国首例“超级细菌”感染者:一切抗生素都没用 [EB/OL].(2016-05-27) [2017-07-10]. http://news. mydrivers.com/1/484/484270.htm.]
YIN YS,CHEN HH,CAO LY,et al.,2018. Progress in strategies to combat antimicrobial resistance [J]. Chin J Biotechnol,34(8):1346-1360. [尹业师,陈华海,曹林艳,等,2018. 细菌耐药性应对策略研究进展 [J]. 生物工程学报,34(8):1346-1360.]
ZHAO WH,HU ZQ,OKUBO S,et al.,2001. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother,45(6):1737-1742.
(责任编辑 周翠鸣)