以色列Har Keren沙漠黄土环境磁学特征研究*
2020-10-22师永辉刘秀铭毛学刚刘庚余陈金牛
师永辉,刘秀铭,毛学刚†,吕 镔,刘庚余,陈金牛
以色列Har Keren沙漠黄土环境磁学特征研究*
师永辉1,2,刘秀铭1,3,4,毛学刚1,3†,吕 镔1,3,刘庚余1,2,陈金牛1,2
(1. 湿润亚热带山地生态国家重点实验室培育基地,福州 350007;2. 福建师范大学地理科学学院,福州 350007;3. 福建师范大学地理研究所,福州 350007;4. Department of Environment and Geography,Macquarie University,Sydney NSW2109)
风成黄土是研究古气候变化的良好载体,在全球陆地分布广泛,而不同区域地理环境差异显著,其记录气候变化的机制亦有所不同。以色列南部黄土区地处亚热带沙漠边缘,为探究该区域黄土磁性特征及其对区域环境的响应机制,对内盖夫沙漠边缘黄土区进行野外考察并测试系统环境磁学及粒度参数。结果表明,Har Keren(HK)剖面中磁性矿物主要为碎屑磁铁矿和磁赤铁矿,磁性矿物含量较少,磁性颗粒主要为粗单畴(SD)和多畴(MD),磁性特征与中国西北干旱区黄土较为相似。HK剖面常温磁学参数整体变化范围较小,仅在剖面亚表层有所升高,可能是受现代成土作用影响。HK剖面中值粒径自底部至顶部呈减小趋势,但粒度整体偏粗,其频率分布曲线显示为正偏态,分选较差,反映出多种搬运方式的混合特征,与典型风成黄土有所差异。
环境磁学;磁化率;沙漠黄土;以色列
全球陆相风成黄土具有分布面积广、沉积连续且时间跨度大等特点,是研究不同时空尺度古气候与古环境变迁的重要载体[1]。黄土中磁性矿物的物理化学特性受区域气候条件影响,在不同沉积环境中会发生显著变化,因此应用环境磁学方法研究黄土中磁性矿物种类、含量和粒径等信息有助于认识过去环境变化的过程[2]。大量研究表明,不同气候背景下黄土磁化率变化机制差异显著,例如中国黄土高原黄土-古土壤磁化率变化可作为反映东亚夏季风强弱的代用指标,与成土作用呈显著相关,但具有一定适用范围[3-4];西北干旱区,由于成土作用弱,黄土与古土壤层差异不明显,其磁化率与成壤作用的相关性较差[5-6];南半球新西兰黄土受物源区初始物质与沉积区湿润气候影响,磁化率与成土作用不存在相关性[7];而高纬度地区乌克兰、西伯利亚和阿拉斯加黄土在成土过程中发生潜育化,其磁化率与成土作用表现出反相关关系,即黄土层磁化率高于古土壤层[8-9]。前人研究表明,西亚与北非干旱、半干旱区存在多处黄土沉积[10],但分布范围较小,沉积时间亦较短(70~10 kaBP),并且黄土粒度偏粗,多以粗粉砂和极细砂为主[11-13],与中国黄土高原黄土特征差异较大。以色列内盖夫地区黄土分布范围相对较大,面积约5 500 km2,相关研究主要涉及黄土年代学、黄土与古环境变化、黄土物源及形成机制等方面[14-16],尚缺少该地区黄土环境磁学研究。本文以内盖夫沙漠东部Har Keren沙漠黄土为研究对象,综合剖面宏观沉积特征和磁学实验结果,系统分析其磁性特征及其对区域环境的响应。
1 材料与方法
1.1 研究区与剖面概况
Har Keren位于以色列南部西奈-内盖夫沙漠东部边缘地带,为东北-西南向低矮丘陵,地形起伏和缓,最高海拔360 m,西部靠近地中海东南岸(图1a)。研究区属亚热带沙漠气候,地表植被稀疏,年平均降水量100~150 mm,降雨频数少,但多以突发性强降雨天气为主,1月份日平均温度为10℃,8月份日平均温度为24℃[13]。区域气候夏季受副热带高压控制,炎热干旱,冬季在地中海塞浦路斯低压影响下,相对温和凉爽,当地常年盛行偏西风。
研究剖面(31°0′34″N,34°30′48″E,图1b)位于Har Keren西北侧山谷地带(以下简称HK剖面),HK剖面顶部海拔320 m,地表由黄土覆盖,并且随地形起伏呈披覆特征,矿物组成以石英和长石为主。剖面厚2.8 m,从顶部灰黄色至底部渐变为浅棕黄色,垂直节理较为发育。剖面土层疏松多孔,胶结性较差,从顶部至下层2.4 m含有部分蜗牛壳碎屑,从中取出少量完整陆生蜗牛化石,为属(图1c)。剖面下层1.8 m和2.4 m层明显混杂有碳酸盐岩碎屑物(图1c),多呈棱角状且分选差,与周围斜坡碳酸盐岩风化碎屑岩性相同。Enzel等[17]对HK剖面周边斜坡及峡谷黄土状堆积物进行释光年代学测试表明,该区域黄土状沉积物沉积时间较短,始于全新世早期。由于周边区域地形相对低洼,并且受上风向沙漠活动影响,Crouvi等[13]综合遥感和野外调查等方法研究认为该区域黄土状沉积物主要为次生黄土,即在风力搬运堆积过程中亦受到斜坡冲积作用。由于HK剖面无明显土壤发生层次,因此按20 cm间隔采样,共获得样品15个,底部基岩为碳酸盐岩,在其上风向内盖夫沙漠中采集表层沙样品,共计3个。为分析不同气候区黄土磁性特征差异,选择半湿润区西安黄土和半干旱区兰州九州台黄土作为对比研究,选取剖面上部典型样品,西安黄土样品9个,兰州九州台黄土11个。
图1 HK剖面位置(a、b)和黄土中砾石层及蜗牛壳(c)
1.2 实验方法
将干燥样品研磨成粉末状,称取5 g装入无磁性样品盒,测量系列磁学参数:使用Bartington MS2型磁化率测量低频(470 Hz)与高频(4 700 Hz)磁化率(分别表示为clf、chf),计算百分比频率磁化率(cfd%=100%×(clf–chf)/clf);使用ASCD-2000型交变退磁仪和Molspin Minispin旋转磁力仪测量非磁滞剩磁(ARM),交变场峰值为 100 mT,直流场为50 μT,并计算非磁滞磁化率(cARM=ARM/50 μT);使用DPM1脉冲磁化仪对样品施加正反向强磁场,并采用Molspin Minispin旋转磁力仪测量样品等温剩磁(IRM)和饱和等温剩磁(SIRM=IRM1T),其他常温磁学参数由相应公式计算得出。选取剖面典型样品测量磁滞回线和磁化率随温度变化曲线(κ-T曲线)。典型样品磁滞回线采用可变场磁天平(Variable Field Transition Balance)测量,磁化率随温度变化曲线(κ-T曲线)由KLY-3磁化率仪和CS-3加热装置测得,样品加热至700℃后冷却至室温。以上实验均在福建师范大学地理科学学院湿润亚热带山地生态重点实验室完成。
2 结果与讨论
2.1 常温磁学参数特征
通过系统分析样品常温磁学参数及其比值,可有效反映其中磁性矿物的详细特征。HK剖面样品常温磁学参数随深度变化见图2。磁化率受磁性矿物类型、含量和磁性颗粒大小(磁畴状态)等因素影响[18],可反映样品中磁性矿物的整体特征。HK剖面磁化率值(图2a)介于23~40.5×10–8m3·kg–1,平均值为27.91×10–8m3·kg–1,自下层至顶部呈微弱增加趋势。与西峰黄土相比[19],HK剖面磁化率值总体偏低,变化范围较小,表明其中亚铁磁性矿物含量较少。SIRM通常用于反映亚铁磁性矿物含量,并且SIRM与cARM作为剩磁参数对单畴(SD)亚铁磁性颗粒反应尤其灵敏。HK剖面SIRM和cARM(图2b和图2c)显示与磁化率变化趋势一致,且数值总体偏低,说明样品中亚铁磁性矿物含量较少,SD颗粒含量亦较低,其中cARM与磁化率变化趋势一致说明磁化率在上部的增强受SD颗粒亚铁磁性矿物影响。剩磁参数比值如cARM/χ、cARM/SIRM常用于指示SD颗粒亚铁磁性矿物的相对含量,其比值越大,表示SD颗粒相对含量较高。HK剖面cARM/χ与cARM/ SIRM(图2f和图2g)随深度变化趋势基本一致,与黄土高原东南部黄土剖面相比[20],其数值明显偏低,表明样品中细颗粒磁性矿物(SD颗粒)含量较半湿润区黄土明显偏少。百分比频率磁化率(cfd%)可反映样品中超顺磁(SP)颗粒磁性矿物相对含量[21],当cfd%<5%说明样品受SP颗粒的影响小,而主要反映粗颗粒(多畴)的影响。HK剖面样品cfd%值介于0.31%~2.17%,说明样品中基本不含SP颗粒磁性矿物,而主要受粗颗粒磁性矿物的影响。剩磁矫顽力(Bcr)大小可判断样品中磁性矿物类型和磁畴颗粒大小[22],软磁性矿物(如磁铁矿和磁赤铁矿)较硬磁性矿物(如赤铁矿)的Bcr低,相同磁性矿物的SD颗粒较多畴(MD)颗粒Bcr高。图2e显示,HK剖面样品Bcr随深度变化波动较小,数值介于28.26~29.42 mT,指示剖面样品中磁性矿物均以软磁性组分为主,并且其磁性颗粒可能总体较粗。通常情况下,样品中软磁性矿物在低磁场300 mT以内就可以达到饱和,而硬磁性矿物在1 000 mT甚至更高磁场下才能饱和。F300(F300=IRM300/SIRM)常用于分析沉积物中软磁性矿物与硬磁性矿物的相对含量,其中软磁性矿物含量与其比值呈正相关。HK剖面样品F300(图2h)总体均达到0.9以上,表明剖面中磁性矿物类型主要以软磁性组分为主。Dearing图通常用于分析样品中磁性颗粒的相对含量及大小[23]。HK剖面Dearing图显示(图3),与兰州九州台黄土、西安黄土、新疆米东黄土[24]相比,HK剖面磁性颗粒与新疆米东黄土较为相似,样品中磁性颗粒介于粗SD和MD区域,细颗粒磁性矿物相对含量偏低,反映了干旱区黄土由于成土作用较弱,磁性矿物主要以原生碎屑组分为主,而在相对湿润的西安黄土区,其中磁性矿物经过较强的风化成壤作用后,磁性矿物含量大幅增加,粒径亦明显变细。
图2 HK剖面常温磁学及粒度参数
图3 HK剖面与中国不同区域黄土Dearing图
磁滞回线形状及其参数(如Mrs、Ms、Bc、Bcr)可直观反映沉积物中磁性矿物特征[25]。图4为HK剖面不同层位样品磁滞回线,虚线为经过顺磁性校正后磁滞回线形态。经校正后样品磁滞回线在300 mT磁场时已经闭合,图4a和图4b磁滞回线呈狭窄陡直形态并且矫顽力(Bc)较低,表明样品中以粗颗粒亚铁磁性矿物为主,与中国西北干旱区黄土特征相似[5]。图4c显示剖面下层样品磁滞回线在300 mT磁场时已经闭合,并且矫顽力很低,但当磁场继续增加,曲线形态曲折波动,说明亚铁磁性矿物含量较少,磁性偏弱。剖面典型样品饱和磁化强度(Ms)总体偏低,也同样反映其中磁性矿物含量偏低。图中未经校正磁滞回线在300 mT以上磁化强度随磁场强度线性增强,表明HK剖面样品中含有部分顺磁性物质。
2.2 高温磁学曲线特征
磁化率随温度变化曲线(κ-T曲线)通常根据曲线转折点、变化趋势及加热与冷却曲线相对位置判断磁性矿物种类和磁畴颗粒大小。图5为HK剖面不同层位κ-T曲线,如图所示,所有样品加热曲线在0~300℃加热过程中磁化率有所升高,可能与样品中磁性颗粒受热解阻有关[26]。剖面上层样品HK1、HK2、HK4的加热与冷却曲线居里点均位于580℃附近,表明样品中主要磁性矿物为磁铁矿。剖面所有样品加热与冷却曲线均显示为不可逆形态,上层样品HK1、HK2、HK4(图5a、图5b、图5c)加热曲线在300~450℃有明显下降,指示样品中有少量热不稳定磁赤铁矿转变为弱磁性赤铁矿[27],加热曲线在500℃附近存在微弱峰值,指示剖面上层样品中可能存在少量有机质成分,并且剖面上层样品冷却曲线位于加热曲线上方,表明加热过程中在有机质参与下部分弱磁性矿物转化为强磁性磁铁矿[28-29]。剖面下层样品HK8、HK13、HK15(图5d、图5e、图5f)冷却曲线均位于加热曲线下方,说明加热过程中少量磁赤铁矿转化为赤铁矿,导致加热后样品磁性降低,但其居里点仍位于580℃附近,指示样品中磁性矿物主要为磁铁矿。
图4 HK剖面典型样品磁滞回线
图5 HK剖面典型样品热磁κ-T曲线
2.3 黄土磁性特征与区域环境关系探讨
黄土中磁性矿物主要由原生碎屑组分和次生细粒组分构成,原生磁性矿物反映了物源区及搬运风力变化等信息,而次生细粒磁性矿物可指示沉积区气候特征及成壤作用的强弱[1,30]。以上通过系统的磁学指标分析认为,HK剖面中磁性矿物为磁铁矿和磁赤铁矿,磁性颗粒以MD和粗SD为主,为原生碎屑组分,磁性矿物含量较低,与中国西北干旱区黄土磁性特征较为相似[5]。通过对比HK剖面χlf与SIRM、cARM的相关性(图6a、图6b)发现,剖面χlf与SIRM呈明显正相关,表明其χlf变化主要由亚铁磁性矿物含量决定。HK剖面χlf与cARM相关系数相对较低,两者仅在剖面上部变化趋势较为一致(图2a、图2c),说明剖面上部磁性变化受粗SD颗粒亚铁磁性矿物影响较大。相关研究表明[5],中国西北干旱区黄土磁化率与粒度呈正相关,而HK剖面中值粒径(Md,图2i)结果显示,剖面粒度整体偏粗,且自底部至顶部呈减小趋势,与χlf变化趋势相反,说明HK剖面与西北干旱区黄土磁性增强机制有所不同。
土壤磁性特征受区域气候条件影响,吕厚远等[31]对中国表土磁化率研究认为,当区域年平均降水量低于1 100 mm界线时,土壤磁化率随着降水量的增加而增加。HK剖面与其上风向内盖夫沙漠样品对比显示(表1),虽然两者磁学参数总体均偏低,但存在明显差异。除χfd%外,HK剖面磁学参数χlf、χARM、SIRM明显高于内盖夫沙丘样品,说明HK剖面磁性矿物含量较沙漠样品相对较多。与中国干旱、半干旱区黄土如米东黄土[24]和九州台黄土[32]相比,HK剖面所在区域现代降水量相对较低,磁性较弱,其χlf、χfd%、χARM、SIRM结果表明黄土沉积后期成土作用不显著,其中磁性矿物仍以源区碎屑磁铁矿为主。西安黄土位于半湿润区,现代降水量达600 mm[33],其磁性特征明显区别于干旱区黄土,表明随着降水量的增加,区域风化成土作用显著增强,磁性矿物性质亦发生转变,研究表明[1],黄土高原土壤发育过程中生成的大量细粒磁性矿物是其磁性增强的主要原因。而对HK剖面研究结果显示,剖面自底部2.8 m至上部0.4 m整体磁性变化不大,仅在0.4 m以上有明显增强(图2a),表明HK剖面沉积后期物理风化作用较强,加之表层亦有少量植被生长,即受现代微弱成土作用影响,因此剖面上部磁性略有增加。
野外观察发现,HK剖面中混杂有少量粗粒碳酸盐岩碎屑,尤其下部混杂有两层明显的砾石碎屑层(图1c),多呈棱角状且分选差,原因可能是该区域虽处亚热带干旱区,降水量少,但多以突发性强降雨为主,加之区域植被覆盖度低,因此在短期强烈流水冲积作用下斜坡岩石碎屑物被携带至山谷底部堆积。粒度频率分布曲线可反映沉积物搬运动力及沉积环境的变化。HK剖面不同深度样品的频率分布曲线(图6c)显示为双峰或三峰分布,主峰偏向粗粒一侧且含量高,表现为尖窄峰态,众数粒径介于70~90 μm,两侧次峰所占含量较低,说明沉积物主要通过近距离跃移搬运堆积为主。相关研究表明[17],该区域黄土沉积物主要来自上风向内盖夫沙漠,经风力搬运、磨蚀而沉积于Har Keren地区,因而与上风向内盖夫沙漠样品的粒度频率分布曲线差异较大,后者频率分布曲线为单峰态,粒径偏粗。HK剖面频率分布曲线右侧有少量粗粒组分存在,说明堆积过程中可能由于剖面位于负地形,周边斜坡的岩石风化碎屑物在强风作用下蠕移搬运至此,或者在短时强降雨条件下受斜坡冲积作用而混入其中。
表1 HK剖面与不同黄土区降水量及磁学参数对比
图6 HK剖面磁学参数相关性及频率分布曲线
3 结 论
通过对以色列Har Keren沙漠黄土(HK剖面)的沉积特征考察和磁学及粒度实验分析,初步探讨了此区域黄土磁性特征以及与区域环境关系,得出以下结论:(1)HK剖面常温磁学参数和高温热磁曲线结果表明,剖面中磁性矿物主要为磁铁矿和磁赤铁矿,磁性矿物含量较少,并且主要为粗磁性颗粒,以MD和粗SD为主,反映其是来自物源区的原生碎屑磁性矿物,磁性特征在干热气候条件下未发生明显转变。(2)HK剖面常温磁学参数χlf、χARM、SIRM自底部至顶部整体变化较小,仅在顶部有所增强,反映出剖面上部受现代微弱成土作用影响,磁性略有增加。(3)HK剖面中值粒径整体偏粗,粒度频率分布曲线分布较宽,并且剖面下部混杂有砾石碎屑层,反映了剖面在近源风力搬运堆积过程中,亦受到斜坡流水冲积作用影响。
[ 1 ] Deng C L,Liu Q S,Pan Y X,et al. Environmental magnetism of Chinese loess-paleosol sequence[J]. Quaternary Sciences,2007,27(2):193-209. [邓成龙,刘青松,潘永信,等. 中国黄土环境磁学[J]. 第四纪研究,2007,27(2):193—209.]
[ 2 ] Liu Q S,Deng C L,Pan Y X. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism[J]. Quaternary Sciences,2007,27(6):955—962. [刘青松,邓成龙,潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J]. 第四纪研究,2007,27(6):955—962.]
[ 3 ] Liu X M,Liu Z,Lü B,et al. The magnetic properties of Serbian loess and its environmental significance[J]. Chinese Science Bulletin,2012,57(33):3173—3184. [刘秀铭,刘植,吕镔,等. 塞尔维亚黄土的磁学性质及其环境意义[J]. 科学通报,2012,57(33):3173—3184.]
[ 4 ] Zhou L P,Oldfield F,Wintle A G,et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature,1990,346(6286):737—739.
[ 5 ] Lü B,Liu X M,Zhao G Y,et al. Rock magnetic properties of Bole loess in Xinjiang and its environmental significance[J]. Journal of Lanzhou University(Natural Sciences),2012,48(5):1—8. [吕镔,刘秀铭,赵国永,等. 新疆博乐黄土岩石磁学特征及环境意义[J]. 兰州大学学报(自然科学版),2012,48(5):1—8.]
[ 6 ] Jia J,Xia D S,Wang B,et al. The comparison between Loess Plateau and Ili loess magnetic properties and their implications[J]. Quaternary Sciences,2012,32(4):749—760. [贾佳,夏敦胜,王博,等. 黄土高原与伊犁黄土磁学特征对比及启示[J]. 第四纪研究,2012,32(4):749—760.]
[ 7 ] Ma M M. Discussion on the mechanism of magnetic change of loess in Australia and New Zealand[D]. Lanzhou:Lanzhou University,2012. [马明明. 澳大利亚与新西兰黄土磁学变化机制探讨[D].兰州:兰州大学,2012.]
[ 8 ] Liu X M,Liu D S,Xia D S,et al. Analysis of two soil-forming models under the conditions of paleoclimate record oxidation and reduction of loess susceptibility in China and Siberia[J]. Science China:Earth Sciences,2007,37(10):1382—1391. [刘秀铭,刘东生,夏敦胜,等. 中国与西伯利亚黄土磁化率古气候记录—氧化和还原条件下的两种成土模式分析[J]. 中国科学:地球科学,2007,37(10):1382—1391.]
[ 9 ] Liu X M,Xia D S,Liu D S,et al. Two models of Climate Records of Loess susceptibility in China and Alaska[J]. Quaternary Sciences,2007,27(2):210—220. [刘秀铭,夏敦胜,刘东生,等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J]. 第四纪研究,2007,27(2):210—220.]
[ 10 ] Crouvi O,Amit R,Enzel Y,et al. Active sand seas and the formation of desert loess[J]. Quaternary Science Reviews,2010,29(17):2087—2098.
[ 11 ] Pye K,Tsoar H. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev,Israel[J]. Geological Society London Special Publications,1987,35(1):139—156.
[ 12 ] Karimi A,Khademi H,Kehl M,et al. Distribution,lithology and provenance of peridesert loess deposits in northeastern Iran[J]. Geoderma,2009,148(3/4):241—250.
[ 13 ] Crouvi O,Amit R,Porat N,et al. Significance of primary hilltop loess in reconstructing dust chronology,accretion rates,and sources:An example from the Negev Desert,Israel[J]. Journal of Geophysical Research,2009,114(F2):1—16.
[ 14 ] Crouvi O,Amit R,Enzel Y,et al. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert,Israel[J]. Quaternary Research,2008,70(2):275—282.
[ 15 ] Crouvi O,Dayan U,Amit R,et al. An Israeli haboob:Sea breeze activating local anthropogenic dust sources in the Negev loess[J]. Aeolian Research,2017,24:39—52.
[ 16 ] Enzel Y,Amit R,Dayan U,et al. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts[J]. Global and Planetary Change,2008,60(3/4):165—192.
[ 17 ] Enzel Y,Amit R,Crouvi O,et al. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg[J]. Quaternary Research,2010,74(1):121—131.
[ 18 ] Liu Q S,Deng C L. Magnetic susceptibility and its environmental significance[J]. Journal of Geophysics,2009,52(4):1041—1048. [刘青松,邓成龙. 磁化率及其环境意义[J].地球物理学报,2009,52(4):1041—1048.]
[ 19 ] Guo X L. The spatial variation of loess magnetic characteristics and its mechanism on the Loess Plateau since 0.5Ma[D]. Lanzhou:Lanzhou University,2011. [郭雪莲. 黄土高原50万年来黄土磁性特征空间变化及其机制[D]. 兰州:兰州大学,2011.]
[ 20 ] Wang X S,Yang Z Y,Reidar L,et al. Environmental magnetism and paleoclimatic interpretation of the Sanmenxia loess-paleosol sequence in the southeastern extremity of the Chinese Loess Plateau[J]. Chinese Science Bulletin,2006,51(13):1575—1582. [王喜生,杨振宇,Reidar Lovlie,等. 黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义[J]. 科学通报,2006,51(13):1575—1582.]
[ 21 ] Thompson R,Oldfield F. Environmental magnetism[M]. London:Allen Unwin,1986.
[ 22 ] Qu Z. An introduction of magnetic parameters in environmental studies[J]. Geological Science & Technology Information,1994,13(2):98—100,104. [曲赞. 用于环境研究的磁性参数简介[J]. 地质科技情报,1994,13(2):98—100,104.]
[ 23 ] Dearing J A,Bird P M,Dann R J L,et al. Secondary ferrimagnetic minerals in Welsh soils:A comparison of mineral magnetic detection methods and implications for mineral formation[J]. Geophysical Journal International,1997,130(3):727—736.
[ 24 ] Lü B. The environmental magnetism study of loess in north Xinjiang[D]. Lanzhou:Lanzhou University,2012. [吕镔. 北疆黄土环境磁学研究[D]. 兰州:兰州大学,2012.]
[ 25 ] Xia D S,Ma J Y,Wang G,et al. Environmental magnetism concepts and their applications to environmental studies in arid regions,Northwest China[J]. Earth Science Frontiers,2006,13(3):168—179. [夏敦胜,马剑英,王冠,等. 环境磁学及其在西北干旱区环境研究中的问题[J]. 地学前缘,2006,13(3):168—179.]
[ 26 ] Zhao X Y,Liu Q S. Effects of the grain size distribution on the temperature-dependent magnetic susceptibility of magnetite nanoparticles[J]. Science China:Earth Sciences,2010,40(7):873—880. [赵翔宇,刘青松. 粒径分布对磁铁矿磁化率变温曲线的影响[J].中国科学:地球科学,2010,40(7):873—880.]
[ 27 ] Deng C,Zhu R,Jackson M J,et al. Variability of the temperature-dependent susceptibility of the holocene eolian deposits in the Chinese loess plateau:A pedogenesis indicator[J]. Physics & Chemistry of the Earth Part A Solid Earth & Geodesy,2001,26(11/12):873—878.
[ 28 ] Hanesch M,Stanjek H,Petersen N. Thermomagnetic measurements of soil iron minerals:The role of organic carbon[J]. Geophysical Journal International,2006,165(1):53—61.
[ 29 ] Han G Z,Huang L M,Li S Q,et al. Review and prospect of researches on production and transformation of magnetic minerals in paddy soils during pedogenesis[J]. Acta Pedologica Sinica,2017,54(2):309—318. [韩光中,黄来明,李山泉,等. 水耕人为土磁性矿物的生成转化机制研究回顾与展望[J]. 土壤学报,2017,54(2):309—318.]
[ 30 ] Pan Y,Hu X F. Multiple origins of magnetic minerals in soils—Discrimination between pedogenic and anthropogenic magnetism[J]. Acta Pedologica Sinica,2010,47(2):206—215. [潘赟,胡雪峰. 土壤磁性矿物的多元成因——成土作用成因与人为污染成因磁性的区分[J]. 土壤学报,2010,47(2):206—215.]
[ 31 ] Lü H Y,Han J M,Wu Naiqin,et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China(Series B),1994,24(12):1290—1297. [吕厚远,韩家懋,吴乃琴,等. 中国现代土壤磁化率分析及其古气候意义[J].中国科学(B辑),1994,24(12):1290—1297.]
[ 32 ] Rao Z G,Chen F H,Wang H B,et al. Eastern Asian summer monsoon variation during MIS 5e as recorded by paleosol S1at Jiuzhoutai loess section[J]. Marine Geology & Quaternary Geology,2006,26(2):103—111. [饶志国,陈发虎,汪海斌,等.九州台古土壤S1记录的末次间冰期东亚夏季风变化[J]. 海洋地质与第四纪地质,2006,26(2):103—111.]
[ 33 ] Zhao J B,Shao T J,Niu J J. Permeability and water bearing conditions of loess in Bailu tableland in the eastern suburbs of Xi’an[J]. Geographical Research,2009,28(5):1188—1196. [赵景波,邵天杰,牛俊杰. 西安白鹿塬黄土渗透性与含水条件[J]. 地理研究,2009,28(5):1188—1196.]
Study on Environmental Magnetic Characteristics of Loess in Har Keren Desert, Israel
SHI Yonghui1, 2, LIU Xiuming1, 3, 4, MAO Xuegang1, 3†, LÜ Bin1, 3, LIU Gengyu1, 2, CHEN Jinniu1, 2
(1. State Key Laboratory for Subtropical Mountain Ecology, Fuzhou 350007, China; 2. College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; 3. Institute of Geography, Fujian Normal University, Fuzhou 350007, China; 4. Department of Environment and Geography, Macquarie University, Sydney, NSW2109, Australia)
Aeolian loess, widely distributed over the world, is a good carrier for studying paleoclimate change. However, mechanisms of their recording climate change vary as their geographical environments from region to regions. The loess region in the south of Israel borders, a subtropical desert.To explore mechanisms of loess magnetic characteristics responding to the environment of this region, a field survey was conducted in the loess area on the fringe of the Negev Desert to investigate systems environmental magnetism and particle size composition.This study had soil samples collected from the area and analyzed for types, contents and particle sizes of magnetic domain particles therein by means of the room temperature and high temperature magnetic methods. Through analysis of particle size composition of the samples, transport process and deposition characteristics of loess were determined.Results show that the magnetic minerals in the HK profile consisted mainly of clastic magnetite and maghemite, quite low in content. The Dearing plot of the sample shows that the magnetic domain particles in the magnetic minerals were quite coarse and mainly of coarse single domain (SD) and multi-domain (MD). Analysis of particle size composition shows that particles in the HK profile varied in size, tended to be coarse, declining from the bottom to the top in the profile, with frequency distribution curve appearing to be of positive skewness and were hard to be fractionated, exhibiting the feature of a mixture of multiple transport modes, which was somewhat different from that of a typical aeolian loess.(1) Both the room-temperature magnetic parameters and high-temperature thermomagnetic curve of the HK profile show that the magnetic minerals in the HK (Har Keren) profile samples consist mainly of clastic magnetite and maghemite, quite low in content, quite coarse in particle size, and dominated with coarse SD and MD, which reflects that they are clastic magnetic minerals coming from the source area. The loess in the profile is quite similar to that in the arid region of Northwest China in magnetic characteristics. (2) The room-temperature magnetic parameters of the HK profile, as a whole, vary within a quite narrow range and ascend somewhat only in the sub-surface layer, which may be attributed to the impact of the modern soil forming process. And (3) median particle size of the HK profile displays a trend of declining from the bottom to the top, and the particles tend to coarse on the whole. Its frequency distribution curve appears to be of positive skewness and the particles are hard to be fractionated. Besides, in the bottom of the profile mixed are gravel debris layers. All of the above reflect that the process of near-source-wind-driven transport and deposition has been subjected to the fluvial effect of flows.
Environmental magnetism; Magnetic susceptibility; Desert Loess; Israel
P318.4
A
10.11766/trxb201906240232
师永辉,刘秀铭,毛学刚,吕镔,刘庚余,陈金牛. 以色列Har Keren沙漠黄土环境磁学特征研究[J]. 土壤学报,2020,57(5):1177–1185.
SHI Yonghui,LIU Xiuming,MAO Xuegang,LÜ Bin,LIU Gengyu,CHEN Jinniu. Study on Environmental Magnetic Characteristics of Loess in Har Keren Desert,Israel[J]. Acta Pedologica Sinica,2020,57(5):1177–1185.
* 国家自然科学基金项目(41602184、41772180)、福建省自然科学基金项目(2017J01655)资助Supported by the National Natural Science Foundation of China(Nos. 41602184,41772180),Natural Science Foundation of Fujian Province(No.2017J01655)
,E-mail:maoxuegang1@163.com
师永辉(1993—),男,河南周口人,硕士研究生,主要从事土壤磁学与古环境研究。E-mail:shiyonghui25@163.com
2019–06–24;
2019–09–14;
优先数字出版日期(www.cnki.net):2019–11–22
(责任编辑:檀满枝)