一种24 GHz新型紧凑型柔性低剖面可穿戴天线
2020-10-14张莹陈娅莉宗卫华
张莹 陈娅莉 宗卫华
摘要:可穿戴天线是集成在衣物表面或贴附在人体表面的天线,不能影响佩戴者的日常生活,因此为缩小天线尺寸,降低天线剖面,更好的适应人体,本文设计了一款结构简单、易于加工、重量轻、尺寸小、低剖面、低沉本的可用于人体穿戴的低剖面小型化穿戴天线。本文选用相对介电常数为35,厚度仅有70 μm的聚酰亚胺柔性基板,采用半共面波导(coplanar waveguide,CPW)的馈电方式来设计工作在24 GHz工业科学医学频段(industrial scientific medical band,ISM)的可穿戴天线。该天线具有1815 mm × 264 mm的紧凑尺寸,天线在人体表面的仿真带宽为122~26 GHz,较好的满足ISM 24 GHz(242~2484 8 GHz)医学频段的要求,实现了天线的小型化。本文提出的设计方法为减小穿戴天线尺寸提供了解决方法。
关键词:穿戴天线; 柔性天线; ISM频段; 低剖面; 半共面波导; 小型化
中图分类号: TP368.33; TN822.+5 文献标识码: A
可穿戴天线在天线领域作为一种新天线,在位置跟踪、医疗检测、军事应用、娱乐等方面因具有较好发展前景而受到越来越多的关注,预计在不久的将来将取代有线通信网络[1]。随着人口的老龄化,糖尿病、高血压等各类疾病的发病率逐年增加,可穿戴天线设备可以对中老年群体的血压、心跳和血糖等进行精准测量。2014年,许多可穿戴商业设备上市进入大众视野,如谷歌眼镜、蓝牙耳机、智能手环、太阳能充电背包、键盘裤子等。为了更好地适应人体,可穿戴天线的质量和体积都越来越小,大多数可穿戴天线由柔性或纺织材料制成。众所周知,由于柔性天线具有可弯曲性和质量轻的特点,因此便于携带是设计可穿戴天线的理想选择。可穿戴天线对工作环境具有一定的要求,人体作为一种复杂介质必然会对天线的性能产生影响,而可穿戴天线需要能够在人体表面的静电辐射下正常工作,还要考虑人体对电磁波的吸收,因此设计可穿戴天线充满挑战。M. E. Atrash[2]等人采用柔性基板Gil GML 1034,设计了一种工作在241 GHz和521 GHz的可穿戴天线,天线采用共面波导的馈电方式,尺寸为20 mm×50 mm×01 mm;S. Gogikar等人[3]采用柔性皮革基板设计了一种可穿戴天线,天线采用共面波导馈电方式,尺寸为40 mm×43 mm×2 mm;Liu Q等人[4]使用可弯曲材料设计了一种新型的共面波导馈电的可穿戴天线,尺寸为75 mm×75 mm×1 mm;S. M. H. Varkian[5]设计的天线尺寸为585 mm×62 mm×5 mm。由于可穿戴天线必须是易携的[6],因此天线尺寸要小型化,但是很多可穿戴天线和柔性天线的厚度都在1 mm以上[79],且尺寸也很大[1012]。可穿戴天线具有很好的发展前景[13],如腕带式天线[14],穿戴在鞋子上的天线[15],医用可穿戴纺织天线[16],用于穿戴领域的人造磁导体纺织天线[17],集成在衣领上的可穿戴天线[18],人体无线局域网[19],刺绣可穿戴天线[20]。基于此,本文提出一种天线介质基板厚度为70 μm的新型紧凑型半共面波导馈电的可穿戴天线,并在高频结构仿真(high frequency structure simulator,HFSS)软件中对所提柔性低剖面可穿戴天线进行仿真。该天线具有1815 mm×264 mm×007 mm的紧凑小尺寸和更薄的基板,形状简单易于制造,且价格便宜。该研究在医疗、军队装备和个人识别等领域应用前景广阔。
1 天线模型
天线辐射贴片是半椭圆形和矩形的组合,半椭圆的短半轴是长半轴的07倍。馈线和地面之间的间隙宽度为02 mm,并且通过50 Ω微带线馈电。为了使天线在人体表面具有满足24 GHz频段要求的带宽,在地面的左下角挖一个窄缝。天线被印刷在厚度为70 μm,且相对介电常数εr=3的柔性衬底上。本文所提天線的最终优化尺寸如下:L=264 mm,L1=1108 mm,L2=14 mm,L3=24 mm,W=1815 mm,W1=1597 mm,W2=094 mm,W3=93 mm,W4=1115 mm,R=85 mm,S1=02 mm,S2=07 mm。天线仿真模型和几何结构如图1所示。
2 天线设计
采用Ansoft公司推出的三维立体电磁仿真软件HFSS来设计优化天线。优化后的天线回波损耗(|S11|)曲线应该满足-10 dB以下的带宽覆盖242~2484 8 GHz。天线设计过程如下,首先是模型设计过程。初始天线参考模型如图2所示,图2a天线Ant1采用共面波导馈电,图2b天线对Ant1进行了切半处理,具有与本文所提天线相同形状的辐射贴片,图2b与本文所提天线的差异是地面的缝隙。
由图2可以看出,Ant1的带宽为31~36 GHz,无法满足24 GHz的频段。当改变Ant1的尺寸时,它仍然无法覆盖24 GHz频段,因此采用切半的方式将Ant1切掉一半,此时带宽为1~19 GHz仍无法覆盖24 GHz,因此需要改变天线辐射贴片或地面形状;由图2b可以看出,在Ant2的基础上,在地面的左下角挖一个宽度为07 mm的缝隙,此时Ant2就变成了本文所提天线。当天线在人体表面时,此间隙可以有效地降低回波损耗,并拓宽带宽。本文提出的天线与人体之间的距离设置为1 mm,仿真中人体的相对介电常数为53,人体形状设置为边长50 mm×50 mm×50 mm的立方体。
Ant1在人体表面仿真结果如图3所示,Ant2和本文所提天线在人体表面仿真结果如图4所示。由图3可以看出,当带宽为31~36 GHz时,此时调整尺寸仍然不能覆盖24 GHz频段,因此只能改变形状,采用切半的方法将Ant1变为Ant2;由图4可以看出,当Ant2的仿真带宽为1~193 GHz时,所提天线的仿真带宽为122~26 GHz。通过在地面左下方挖一个宽度为07 mm的缝隙,所提天线拥有更宽的带宽,并且回波损耗曲线更靠下,较好的覆盖了24 GHz频段(242~2484 8 GHz)的要求。
3 结束语
本文提出了一种新型的柔性低剖面半共面波导馈电方式的可穿戴天线,给出模型设计和仿真过程,仿真结果实现了天线在人体表面较好的满足ISM 24 GHz(242~2484 8 GHz)医学频段的要求。与以往的穿戴天线相比,本文天线材料价格便宜,模型简单,更容易生产制作,并且天线为小尺寸柔性低剖面,因此可以更好的适应人体,提升天线佩戴的舒适感。此外,本文的半共面波导馈电,不仅可以改变天线形状,还大大减小了天线尺寸。综上所述,本文天线在带宽方面性能较好,但在增益方面欠佳,这也是共面波导馈电的不足之处,今后将对天线进行进一步的研究,以在可穿戴天线领域获得更好的结果。
参考文献:
[1] Mandal B, Mukherjee B, Chatterjee A, et al. Design of printed body wearable textile antenna for broadband application[C]∥2013 IEEE Applied Electromagnetics Conference (AEMC). Bhubaneswar: IEEE, 2013: 12.
[2] Atrash M E, Bassem K, Abdalla M A. A compact dualband flexible CPWfed antenna for wearable applications[C]∥2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, CA: IEEE, 2017: 24632464.
[3] Gogikar S, Chilukuri S. A compact wearable textile antenna with dual bandnotched characteristics for UWB applications[C]∥2019 IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Granada, Spain: IEEE, 2019: 426430.
[4] Liu Q, Lu Y. CPWfed wearable textile Lshape patch antenna[C]∥Proceedings of 2014 3rd AsiaPacific Conference on Antennas and Propagation. Harbin: IEEE, 2014: 461462.
[5] Hosseini M, Afsahi M. Grounded CPW multiband wearable antenna for MBAN and WLAN applications[J]. Microw Opt Technol Lett, 2018, 60: 561568.
[6] 徐凌. 可穿戴天線的研究[D]. 成都: 电子科技大学, 2013.
[7] 许德成, 田小建, 郭小辉, 等. 2. 45 GHz与5. 8 GHz双频柔性天线的设计[J]. 吉林大学学报: 理学版, 2016, 54(6): 14131417.
[8] Chen Y S, Ku T U. A lowprofile wearable antenna using a miniature high impedance surface for smartwatch applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 11441147.
[9] 何鱼, 刘毅, 杨银堂. 基于PDMS衬底的可延展柔性倒F天线设计[J]. 中国科学, 2018, 48(6): 724733.
[10] 许德成, 田小建, 郭小辉, 等. 2. 45 GHz柔性可穿戴织物天线的设计与研究[J]. 东北师大学报: 自然科学版, 2016, 48(4): 8891.
[11] Moro R, Agneessens S, Rogier H, et al. Circularlypolarised cavitybacked wearable antenna in SIW technology[J]. IET Microwaves, Antennas & Propagation, 2018, 12(1): 127131.
[12] 解志诚, 黄英, 王志强, 等. 2. 45 GHz柔性微带天线的设计及传感特性[J]. 吉林大学学报: 理学版, 2019, 57(1): 160165.
[13] 董雅儒, 李书芳, 洪卫军. 可穿戴天线研究综述[J]. 信息通信技术, 2018, 12(4): 2632, 58.
[14] Das S, Islam H, BoseT. Compact lowprofile body worn and wrist worn lightweight antenna for ISM and GPS band navigation and medical applications[J]. Microwave and Optical Technology Letters, 2018, 60(9): 21222127.
[15] Ali M, Gentili G B, Salvador C, et al. Design and analysis of a wearable antenna system for wireless safety applications[C]∥2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon: IEEE, 2015: 14.
[16] Singh V K, Singh A K. Design and performance of wearable ultrawide band textile antenna for medical applications[J]. Microwave and Optical Technology Letters, 2015, 57(7): 15531557.
[17] Mersani A, Lotfi O, Ribero J M. Design of a textile antenna with artificial magnetic conductor for wearable applications [J]. Microwave and Optical Technology Letters, 2018, 60(6): 13431349.
[18] Gautam B, Verma P, Singha A, et al. Design of multiple collar stay antennas for wireless wearable compact devices[J]. Microwave and Optical Technology Letters, 2020, 62(2): 743749.
[19] Tong X, Liu C, Liu X, et al. Dualband onoffbody reconfigurable antenna for wireless body area network (WBAN) applications[J]. Microwave and Optical Technology Letters, 2018, 60(1): 284.
[20] Sim C Y D, Tseng C W, Leu H J. Embroidered wearable antenna for ultrawideband applications[J]. Microwave and Optical Technology Letters, 2012, 54(11): 25972600.
A Novel Compact Flexible Low Profile Wearable Antenna Operating in 2.4 GHz
ZHANG Ying, CHEN Yali, ZONG Weihua
(The College of Electronic Information, Qingdao University, Qingdao 266071, China)
Abstract: The wearable antenna is the antenna that integrated on the surface of clothing or attached to the surface of the human body, which cannot affect the daily life of the wearer. Therefore, in order to reduce the size of the antenna, reduce the profile of the antenna, and better adapt to the human body, a simple structure, easy processing, light weight, small size, low profile, low cost, low profile miniaturized wearable antenna for human body is designed in this paper. A polyimide flexible substrate with a relative dielectric constant of 3.5 and a thickness of only 70 μm is selected. It is designed to work in the 2.4 GHz industrial scientific and medical frequency band (ISM) by using the feeding method of half coplanar waveguide (CPW). The antenna has a compact size of 18.15 mm×26.4 mm, which realizes the miniaturization of the antenna. The simulation bandwidth of the antenna on the human body surface is 1.22~2.6 GHz, which satisfies the requirements of the ISM 2. 4 GHz (2.42~2.484 8 GHz) medical frequency band. The design method proposed in this paper provides a solution for reducing the size of the wearable antenna.
Key words: wearable antenna; flexible antenna; ISM band; low profile; half CPW; miniaturized