APP下载

光伏发电并网运行风险评估

2020-10-13张文超刘立群杨智君

太原科技大学学报 2020年5期
关键词:支路潮流发电

张文超,刘立群,杨智君,句 帅,田 敏

(太原科技大学电子信息工程学院,太原 030024)

为了解决分布式电源与大电网的融合问题,微电网的概念应运而生,而且越来越呈现集群化趋势,即多微网发展,所谓的多微电网供电系统,是指由多个分布式电源、储能装置、相关负荷和监控、保护装置汇集而成的协调发电系统,是一个能够按照目标,实现自我控制、保护和管理的自治供电系统。交直流混合微电网系统结构示意图如图1所示:

图1 交直流混合微电网系统结构示意图Fig.1 Schematic diagram of the AC-DC hybrid microgrid

光伏发电系统作为新型电力系统的组成部分,电网结构复杂,为保障供电的可靠性,本文针对光伏发电并网运行系统的相关风险因素展开评估。从源头做好预警机制,利用机器学习对光伏发电系统运行过程中的风险进行分析并处理,分析影响系统稳定运行的重要因素,结合数据获得有价值的知识,进而对系统运行状态做出预判和决策。使系统提前进行运行策略和网架结构调整,从而更安全可靠地运行,为实现微电网自愈提供技术理论支撑[1]。我国目前对于相关的风险因素评估理论已具有一定突破:国内诸多学者由大电网的风险因素评估方法,形成该领域的一系列研究,主要针对以下风险因素展开:风发电、光伏发电等分布式电源的功率不确定性、负荷随机性、微电网网络结构的复杂性、微电网中保护和设备故障的不确定性、自然灾害的因素以及一些偶然的人为因素等[2]。 从而研究出众多解决办法主要有:确定性方法—假定系统可能发生的故障,在每个故障下分析系统是否出现运行条件的越限,如N-1静态安全分析等[3]、综合考虑经济性和可靠性并结合网络风险指数,以衡量配电网结构合理程度,建立配电网规划模型[4]、综合考虑投资成本、运行成本以及分布式电源的消纳,建立了分布式电源选址定容模型[5-6]、概率分析建立配电网风险指标评估,同时运用了CIME语言及状态枚举算法,计算出风险大小[7]。

本文研究思路与主要工作对系统元件进行随机建模,主要光伏发电的分布式发电原件以及投入负荷的随机模型;建立光伏发电并网运行的风险指标体系。主要是分析建立系统各节点电压越限、支路潮流越限的计算概率和严重度指标方法。并以此来评估光伏发电并网运行后给系统带来的随机风险;根据随机潮流算法进行风险评估。分析光伏发电构成微电网并网运行容量的不同、对系统所造成的电压越限风险和支路潮流越限风险,并定量评估其对应的风险数值大小。

1 光伏并网运行的风险

1.1 风险定义及特性

社会发展与进步,风险客观存在,造成损失的概率大小随生产力不断进步在持续改变。对其分析和研究有着不同的途径和方法,其定义也不尽相同。不确定性对目标的影响是ISO31000国际标准化组织对"风险"的定义。事件发生的概率和产生的后果这两个基本要素用来衡量风险的大小。系统中电力负荷的不确定性、设备的随机故障导致对系统运行准确预测难以实现。通过对辨识系统失效事件发生的可能性进行电力系统的风险评估,用来分析不同工况下系统各种指标越限的严重程度。

风险所具有的主要特点包括;

(1)客观性:风险的存在是客观的,不受主观意志而发生改变。

(2)普遍性:风险存在社会生产和生活方方面面。

(3)偶然性:不同风险的发生可能性有所不同,其发生具有随机性和不可预估的特点。

(4)必然性:当风险值达到一定程度时,其发生的概率达到100%.

(5)可控性。通过改变系统中的受控变量,可对风险的大小进行控制。

1.2 多微网并网运行面临的风险

多微网中的光伏并网可以提高大电网的弹性,改变网络结构以及潮流分布,提高能量的利用率。但是也必须综合考虑其对整个电力系统产生的负面影响。多微网并网运将使电力系统的结构和运行状态发生很大的改变。

微电网中光发电属于间歇型发电,其输出功率具有随机性,当电力系统中的负荷发生波动时,这将会给电力系统的稳定运行带来一定的风险。

2 随机潮流算法

2.1 半不变量

半不变量是将分布函数F(x)的特征函数进行相关数学变换而得到的变量,也是随机变量的一种数字特征,可以由不高于相应阶次的各阶距求得,随机变量特征函数的表达式如下[8]:

(1)

对特征函数取自然对数,按照麦克劳林展级数式展开,可得:

(2)

式中:kr为r阶半不变量,s表示展开表达式的项数,o(ts)表示余项的无穷小量。半不变量的求取过程主要由距来求取,通常前7阶半不变量与中心矩Mv的有如下关系:

(3)

随机变量的1阶半不变量是它的数学期望,其2阶半不变量对应的是其数学方差。当服从正态分布的随机变量,该随机变量≥3阶的半不变量都为0.

常用的关于半不变量的两个性质:

(4)

性质2:随机变量n倍的v阶半不变量等于该变量的v阶半不变量的nv倍。

2.2 利用半不变量的解析过程

对系统的输入功率进行潮流计算,对应的系统各支路中功率变化量满足相互独立的随机变量,通过对其进行卷积运算,就可以获得各注入功率所满足的分布函数。将该分布函数用半不变量法化为线性。在实际工程中,由于采用节点功率作为节点注入量,这会造成电力系统潮流方程呈非线性化,在求解过程中需要把非线性方程式(组)转变为对相应线性方程式(组)求解的过程,即逐次线性化过程。对于计算系统支路潮流时,已知各节点的状态变量可以利用式(5)来进行计算:

Pij=-UiUj(Gijcosθ+Bijsinθij)+tijGijUi2

(5)

Qij=-UiUj(Gijsinθij-Bijcosθij)+(Bij-bij0)Ui2

(6)

其中:tij为对应支路上的变压比,bij0对应的是1/2线路导纳。

将式(6)用随机变量表示出来可得:

Sz=fz(X)

(7)

式中:Sz表示支路上的输入功率,fz(.)表示支路上的状态变量与输入功率之间的对应关系。其中Sz,X都为随机变量。将该式进行线性化处理,利用泰勒级数展开式将其展开,可得:

Sz=Sz0+ΔSz=fz(X0)+G0ΔX+…

(8)

其中:Sz0为潮流计算过程中的期望值,ΔSz实际功率与期望功率之间的波动量。G0反映了支路功率在状态量的期望值附近的变化情况。即:

(9)

整理式(8),忽略式中二阶以上的高次项,可得输入功率在各支路的分布情况:

(10)

其中:T0反映了输入功率发生变化时对各支路功率的影响。

多微网并网运行系统中不确定性的原因,是由各节点注入功率S的随机变化量ΔS产生,该随机变化量主要由:负荷的随机变化量ΔSload、分布式电源出力的随机性等构成(主要包括:风力发电的随机变量ΔSwind以及光伏发电的随机变量ΔSpv),将这几个独立随机变量进行卷积计算可得到如下公式:

ΔS=ΔSload⊕ΔSwind⊕ΔSpv

(11)

利用半不变量的性质将式(11)进行变换,这几个随机变量对应半不变量分别为:节点注入功率变化量ΔS(k),负荷引起功率变化量ΔSload(k),风力发电引起系统功率变化ΔSwind(k),光伏发电引起系统功率变化ΔSpv(k).对应的这几个半不变量满足关系式(12):

ΔS(k)=ΔSload(k)+ΔSwind(k)+ΔSpv(k)

(12)

同样利用半不变量性质对状态变量的变化量和支路功率的变化量进行简单换算,以简化其卷积计算,对应的公式为:

(13)

变量节点状态变量ΔX(k)和支路功率的k阶半不变量ΔSz(k);(J0-1)(k)、(T0)(k)为对应的不同阶次的灵敏度矩阵。

2.3 随机变量概率分布的求取

求取随机变量概率分布的函数值,通过求取该随机变量各阶半不变量,并结合级数展开式拟合出所要求取的随机变量的概率分布函数情况。

首先将随机变量标准化:

(14)

式中:μ表示随机变量的期望值,σ表示随机变量的标准方差,标准化随机变量的分布函数和概率密度函数可以表示为:

F(x)=φ(x)+c1φ′(x)+c2φ″(x)+c3φ‴(x)+…

f(x)=φ(x)+c1φ′(x)+c2φ″(x)+c3φ‴(x)+…

(15)

Cornish-Fisher级数在计算非正态概率分布时,具有较高的精确度。令连续随机变量X的均值和方差分别为μ和σ,则其标准形式即为:

ε=(x-μ)/σ

(16)

Cornish-Fisher级数展开对应的概率密度函数如下:

(17)

3 多微网并网运行的风险评估

3.1 光伏发电的随机模型

太阳能发电的优点主要包括:建设规模灵活,基本不受地域限制,运行过程安全可靠,受温度和光照强度的影响其输出功率和效率具有随机性。

探究多微电网并网运行系统中光伏发电带来的风险,系统的发力情况与空气中的太阳光辐射强度相关。短时间内辐射量近似满足Beta分布函数,对应的概率密度表达式如(18)为[9-10]:

f(r)=

(18)

式中:α,β为Beta分布函数中所对应的形状参数,Γ表示的是常见的伽玛函数;r,rmax分别为对应的单位时间内实际空气中的阳光辐射强度值以及最大值。由一定时段内空气中的阳光辐射强度平均值和方差,可以求得系统中光伏出力满足Beta分布参数,关系如下[11]:

(19)

(20)

太阳能电池的输出功率不仅与太阳光辐射强度有关,还与光照接触面积及能量转换效率有关。空气中阳光辐射强度的概率分布函数得到后,就可以计算一段时间内光伏发力所对应的系统输出功率数值PM以及最大值PMmax:

PM=r·A·η

(21)

PMmax=rmax·A·η

(22)

式中:A为光伏电池板的面积和,η为光伏电池板对应的转换效率。通过式(21)和式(22)结合光照强度的概率密度分布函数,可以得到光伏发电输出功率的概率密度分布函数,如下式所示[12]:

f(PM)=

(23)

从上式可以看出,输出功率的概率密度分布函数也服从Beta分布,其v阶原点矩如(24):

αv=

(24)

3.2 系统节点电压越限的风险指标函数

系统电压降低,会使系统的能量损耗和功率损耗增加,并对系统稳定运行造成一定的影响,增加投资,使经济性变差。因此需要建立电压的风险指标。

节点电压越限的概率计算公式如下:

(25)

以电压偏移量作为影响电力系统发生事故严重性对应的后果函数值,即节点电压的越限严重度指标,如下;

(26)

(27)

式中:Vi表示电压在系统网络节点i上的幅值大小;Vimin,Vimax为系统节点i所允许的最值情况,本文令最值为额定值的±5%VN,用F(V)表示其累积分布函数。

则电压越限的风险指标函数可以表示如下:

(28)

3.3 支路潮流越限的风险指标函数

当系统处于正常工况下,支路潮流使系统失稳的概率很小;但是,系统处于非正常运行状态时,会使支路潮流增加,当其数值达到线路承受最大值时,会引发线路上的继保装置发生动作,所以需要使其控制在正常工作范围以内,以降低线路跳闸的概率性。因此,研究多微网并网运行系统的风险评估需要考虑到系统网络支路的潮流问题,设置对应的支路潮流行为评估的指标函数。

支路潮流行为的概率运算,仅以最大值进行计算,对应的计算公式如下:

Pr(Sij)=Pr(Sij>Sijmax)=1-F(Sijmax)

(29)

支路过负荷的严峻程度可以用公式(30)表示:

(30)

其中:Sij对应的是支路ij上的有功潮流,Sijmax对应的是有功潮流所允许的上限值大小。

当支路上带负荷为其最大有功容量时,该容量的最大设定值为期望的容量值1.3倍。

F(Sij)用来表示支路中的潮流计算时,计算结果所对应的累积分布情况。

由此可以得到,支路中的潮流行为指标可以表示成式(31):

Rs=Pr(Sij)Sev(Sij)

(31)

4 光伏并网运行风险评估流程

评估流程如下:

第一步:采集多微网并网运行时系统随机潮流计算所需的原始数据,对该数据做出进行检测,并得到需要的变量,主要是:包含了进行常规潮流运算时,系统运行状态所需的参数在内,还包括有网络系统的各节点有关信息内容,以及系统所带的运行负荷对应的统计模型的数字特征、风电发电、太阳能发电的输出功率及概率分布数据。

第二步:由以上所推到出概率模型的表达式,来对负荷、风电和光伏等模型的半不变量进行求取。利用半不变量的性质,将对求取的结果进行线性叠加,以此得到系统网络各节点发力时的半不变量数值大小。

第三步:对各支路进行潮流运算,得到对应系统各节点处的电压的期望值大小,以及系统的各支路潮流发力所对应的期望大小。

第四步:对系统的各节点电压、支路潮流,利用概率统计相关知识,求取其对应的半不变量,将结果用级数展开,得到网络系统中不同的节点电压以及网络系统的支路潮流所对应的概率密度和累积分布函数的表达式对应的曲线。

第五步:由概率分布情况,对运行系统的节点电压和支路潮流功率在运行过程中,将会出现的一系列行为指标做出相应的评估。

5 算例分析

以文献[11]提供的标准IEEE33节点网络系统为基础,在该节点网络系统上并入多微网系统,用来进行了多微网并网运行风险因素评估的研究。该网络系统接线图如图2所示;

图2 配网系统接线图Fig.2 Network system wiring diagram

该系统基准容量Sb=1 MVA,其基准电压为Vb=24.9 kV,节点参考电压为1.03倍的基准电压即Vroot=1.03 p.u.=25.647 kV,为计算简便化,系统中所有的输电线路都被简化为单相线路,并且将24.9/4.16 kV变压器简化,忽略电压调整器在系统中的作用,将系统用一个电压等级来表示。

令每个太阳能电池板的大小为2.16 m2,对应的光能转换效率为13.44%,一个光伏方阵的电池板个数为400.光辐射强度数据参考文献[12],其对某地区模拟得到的光辐射强度通过HOMER软件而得到对应的平均值和方差,由式(19)、(20)求得Beta分布的光照强度,所对应的参数α=0.227 4,β=1.299 5.

假设系统原始负荷值就是对应的节点负荷期望值,其对应的标准差为期望值的0.1倍。选取光伏接入节点33的电压、支路30-33的有功功率为例,把额定功率为100 kW的太阳能电池方阵并入网络系统末端的33节点处。对比光伏接入节点网络前后,该处节点电压和支路有功的变化情况。经仿真验证可得到:各节点的电圧概率密度和累积分布曲线如图3所示:

图3 系统电压概率密度曲线和累积分布曲线Fig.3 Voltage probability density curve and cumulative distribution curve

各节点的有功概率密度和累积分布曲线如图4所示。

图4 系统有功概率密度曲线和累积分布曲线Fig.4 Active probability density curve and cumulative distribution curve

由于太阳能并网发力的不稳定性以及带随机性负载对系统的影响,在多微网并网运行时系统各节点将会呈现一定周期性波动。对比图3可以看出,当系统无外接太阳能发电时,系统各节点电压波动范围在0.95~0.973 p.u.内;

但是,容量为100 kW的光伏发电并入33节点后,系统各节点电压波动范围变大了,为0.95~0.99 p.u.内。由此可得出结论:光伏发电的并网运行,将原系统节点上电压的振荡范围由小变大。

从图4可以看出,在没有光伏发电接入系统时,有功功率值的范围是0~0.03.而接入的光伏发电使原网络系统对应的30~33支路的有功振荡范围超出了正轴范围,让系统之路上的原有的潮流分布发生波动,对应的流动方向在一定程度上也发生了明显的改变。由此可知:接入光伏发电会对系统的节点电压和支路潮流有一定的影响。

求取系统运行时各节点电压的期望值大小,对应的结果如图5所示:

图5 系统各节点电压的期望值Fig.5 Expected values of each node voltage

从中可以看出,容量为100 kW的光伏接入系统网络后,系统各节点上对应电压的期望值大小(即平均值)在数量上都有所增加。由此可以得到:太阳能发电并入网络系统运行,对网络系统的供电质量会有所提高,对于网络节点电压水平也会有一定的改善。

与此同时也发现,原网络系统的各节点电压均值均增大,这也就意味着各节点的电压行为上会出现一定的风险,主要表现在使节点电压更容易超过其最大限值供电。

研究光伏的投入运行,可以得到不同的容量对系统的节点电压和支路潮流的影响有所不同,令节点电压幅值的波动区间为[0.95,1.05],进而得到系统各节点电压越限概率情况,同时计算电压越限节点的风险指标,计算结果如图所示。图6表示容量为3 500 kW、750 kW的光伏发电,分别单独接入33节点后,系统各个节点的电压风险指标。图7表示额容量为1.1 MW的光伏发电单独接入33节点后,得到的系统各节点的电压越限概率、严重度和风险指标。

图6 不同的光伏发电容量接入系统Fig.6 Different power generation capacity access systems

图7 1.1 MW的光伏发电单独接入系统Fig.7 Separate connection system of 1.1 MW Solar energy power generation

由图6可以看出,当容量为750 kW的光伏发电接入33节点后,对应的系统各节点的电压行为指标略有不同,并且行为指标呈现出与能量的接入点位置,以及各节点上所带的随机负载大小相关联。

当容量为350 kW和1.1 MW的光伏能源接入网络系统,从图6、图7可以看出:不同光伏容量的接入会导致节点电压越限风险指标不同。且它们之间成正比关系。

由于节点电压的越限概率和运行时对期望值的偏移量大小同时影响节点电压行为风险指标。所以该指标在并网运行过程中可以对事故的发生情况做出准确的评估,避免了该评估方法的片面性。

6 结论

本文对太阳能发电并网运行进行风险评估,确定光伏发电的随机概率模型。对比光伏未发力状况与接入不同容量时的工作状况,探究对系统的风险指标,得到如下结论:在同一情况下,不同节点的有功负荷不同,对应节点的电压、支路潮流越限风险大小不同。负荷正态分布模型中期望与标准差会影响节点风险值的大小。负荷标准差越大,系统节点电压越限、支路潮流越限可能性就会增加。

不同容量的光伏发电对系统节点电压、支路潮流行为带来一定的影响,通过定量计算出不同情况下风险指标。可以看出:随着接入容量的増加,系统的电压越限风险指标与之呈正相关趋势;电气距离与节点电压越限风险呈负相关趋势。接入容量与支路潮流过载风险的呈正相关趋势;电气距离与支路潮流过载风险呈负相关趋势。

本文对光伏并网运行进行风险评估,确定多微网并网运行的光伏发电的随机概率模型时,没有考虑天气等因素,而微电网中的光伏发电受天气等因素的影响。因此,若将天气等因素加入其输出功率模型中,会使模型更加符合实际。同时,连续型负荷模型对应的是采用正态分布模型,当然也可以在该模型上进一步地探究完善。同时,在探究不同容量的微网并网运行时,尚未探究不同的接入点对于同一系统的风险评估的影响以及微网从多个接入点并网运行时该风险评估方法的适用性;利用随机潮流法对系统进行风险评估时,未考虑系统在实际运行中,对应的随机变量之间都存在一定的耦合关系,本文以相互独立变量进行分析,故该方法与真实情况必然有一定的出入,故该算法还可以进一步完善。

猜你喜欢

支路潮流发电
一种新的生成树组随机求取算法
“发电”
柠檬亦能发电?
含风光发电的互联电力系统自动发电控制论述
支路不对称发电机故障下定子电磁力仿真分析
抽水蓄能机组定子支路数应用与研究
潮流
潮流
潮流
宝马加装Click和Drive系统