APP下载

桤木属内种间杂交亲本种实性状的配合力及竞争优势分析

2020-09-11徐远刘世杰杨勇智李佳蔓陈炙

四川林业科技 2020年4期
关键词:种间配合力杂种优势

徐远, 刘世杰, 杨勇智, 李佳蔓, 陈炙*

1. 筠连县自然资源和规划局,四川 筠连 645250;

2. 四川农业大学林学院生态林业研究所,四川 成都 611130;

3. 长江上游林业生态工程四川省重点实验室,四川 成都 611130;

4. 四川省林业科学研究院,四川 成都 610081;

5. 森林和湿地生态恢复与保育四川省重点实验室,四川 成都 610000

种间杂交在自然界早已存在,且作为商业用材树种的重要性越来越突出,其杂种优势的利用是世界林木遗传改良的主要途径之一[1]。如加勒比洪都拉斯变种(Pinus caribaeavar.hondurensis, PCH)与湿地松本种变种(P. elliottiivar.elliottii, PEE)的杂种F1在材积生长量上具有超亲优势,通直度具有超中亲优势[2-4]。巨桉(Eucalyptus grandis)与其他桉树的杂种,尤其是与尾叶桉(E. urophylla)、赤桉(E.camaldulensis)、细叶桉(E. tereticornis)、亮果桉(E. nitens)的杂种,在提高产量、扩宽桉树在较干旱、较寒冷地区的适应性、增强抗病性等方面发挥着越来越重要的作用,还有木材密度大、纸浆得率高等特点[1]。桤木属植物(AlnusMill.)为天然的属内多倍化木本植物,其根系发达,且具根瘤菌,能够固定空气中游离的氮增加土壤肥力,是集造纸、用材、绿化治荒等为一体的多功能树种[5]。国内外学者先后开展了引种、种源选择、固氮等系列研究[6,7]。杨汉波等[8]、郭洪英等[9]进行了桤木(A.cremastogyne)种内杂交育种工作,但相对于作物,林木本身生长缓慢,对杂种优势利用及生产应用一直未有重大突破,对其杂种优势形成的遗传基础研究还相对薄弱。配合力包括一般配合力(GCA)和特殊配合力(SCA),是杂交育种亲本选配的重要指标,在林木多世代育种的实践中发挥着重要的作用[10]。郭洪英等[9]对桤木完全双列杂交的种实和种苗生长性状的GCA和SCA遗传效应进行了分析评价,结果表明种实性状主要受亲本基因加性效应影响,而种苗生长性状主要受亲本基因非加性效应影响。杨汉波等[8]对桤木半双列杂交子代苗期性状的GCA和SCA遗传效应分析结果发现,并以GCA和SCA值筛选出优良杂交亲本和优良杂交子代。但此前的研究都基于常规杂交,对于桤木属内种间杂交的配合力还未有研究。另外,引种的桤木属植物在某些性状上可能表现出较强的优势,但与本地桤木属植物杂交后是否能将其优势性状遗传给下一代还未可知。因此,通过对桤木属不同杂交组合进行配合力估算,对加快亲本选配、优势杂交组合的筛选,提高桤木育种效率和进程具有重要的理论指导意义。

本研究以引种的1个欧洲桤木(A. glutinosa)和选育的2个桤木(A. cremastogyne)优树为母本,引种的4个台湾桤木(A. formosana)和2个欧洲桤木优树为父本,按照NCⅡ不完全双列杂交设计配置18份杂交组合,分析9个种实性状的一般配合力(GCA)和特殊配合力(SCA)及其与竞争优势的关系,以期为桤木属内种间杂交优良亲本的选配提供理论依据,并筛选具有高竞争优势的杂交组合。

1 材料与方法

1.1 试验材料

筛选9个优良桤木属植物作为亲本材料,其中,母本3份,包括选育、定植于唐昌基地的桤木优树ACjt04、ACjg00及引种定植于唐昌基地的欧洲桤木优树AGyls02。父本选用引种、定植于黑龙潭国家林业和草原长期科研基地的台湾桤木优树AFhlt01、AFhlt05、AFhlt13及唐昌基地的欧洲桤木优树AGtc01和AGtc02,按照NCⅡ不完全双列杂交设计配置18份(3×6)杂交组合,配置信息见表1。

1.2 试验方法

2017年4月在唐昌现代化育苗基地(四川省成都市唐昌镇)配置杂交组合,11月收获杂交F1代种子,以母本自由授粉的种子为对照组(CK)。试验共设置10个区组,3次重复,参照郭洪英等[9]的方法测定种实性状。测定指标包括:果柄长(CL/mm)、果长(FL/mm)、果宽(FWD/mm)、果重(FWH/g)、单果出种数(SSF/粒)、种子长(SL/mm)、种子宽(SW/mm)、种子面积(SA/mm2)、千粒重(WTS/g)。

表1 供试桤木属植物的NCⅡ不完全双列交配设计Tab.1 NCⅡ incomplete diallel mating design for Alnus plants

1.3 数据统计与分析

采用IBM SPSS Statistic 25软件进行双因素方差分析。参照黄远樟等[11]和续九如等[12]提出的不完全双列杂交设计(NCⅡ)遗传配合力的估算方法,计算一般配合力方差和特殊配合力方差,在差异显著的基础上进一步估算一般配合力(GCA)、特殊配合力(SCA)及相关遗传参数。杂种优势计算:竞争优势CH(%)=(F1-CK)/CK,CK为对照值[13]。

2 结果

2.1 各性状方差和配合力方差分析

除单果出种数(SSF)在组合间的差异为显著水平外(P<0.05),其余各性状组合间的差异均达极显著水平(P<0.01),表明18个种间杂交组合间存在丰富的遗传变异(见表2)。性状配合力方差分析结果显示,除果长(FL)的父本配合力方差不显著外,其余性状父、母本的一般配合力方差均显著或极显著水平。种子长度(SL)、种子宽度(SW)和千粒重(WTS)特殊配合力方差达显著水平,其余性状的特殊配合力方差均不显著。母本一般配合力方差均远远大于父本一般配合力方差和组合特殊配合力方差,如种子面积(SA)的母本一般配合类方差分别为父本一般配合力方差和组合特殊配合力方差的30.5倍和28.1倍,表明桤木属种间杂交种实性状主要受到母本基因加性效应控制,同时也表明母本对种实性状具有重要的遗传影响。SL、SW和WTS父/母本的一般配合力方差和杂交组合的特殊配合力方差均达到显著水平,说明这3个性状同时受基因加性效应和非加性效应共同影响,但主要由基因加性效应为主导。

表2 桤木种间杂交种实性状的方差和配合力方差分析Tab.2 Variance analysis of seed and fruit traits and combining ability of interspecific hybridization in Alnus Mill.

2.2 一般配合力(GCA)分析

亲本的GCA在不同的种实性状间存在明显的差异,同一种实性状的GCA在不同的亲本间也存在明显的差异,表明不同的杂交亲本在各种实性状上受基因加性效的影响水平有所不同。3个母本材料中,ACjg00在9个种实性状上的GCA值最大,表明该亲本种实性状的GCA效应值表现最优。ACjt04作母本在全部种实性状上均表现为负向的一般配合力(GCA)效应,其GCA表现最差。6个父本材料中,AGtc02在果长(FL)和单果出种数(SSF)上具有较大的正向一般配合力(GCA)效应,是理想的父本材料。AFhlt05和AFhlt13在千粒重(WTS)、种子宽度(SL)和种子面积(SA)上具有较大的正向GCA值,它们可以作为杂交育种中优良的潜在父本材料(见表3)。

表3 桤木父本、母本一般配合力(GCA)Tab.3 General combining ability (GCA) value of male and female parents in Alnus Mill.

2.3 组合特殊配合力(SCA)效应分析

与一般配合力(GCA)的分析结果相似,各杂交组合在种实性状间的SCA值均存在较大差异。从杂交组合SCA效应值可以看出,SL变幅为-0.55~0.94,具有正向SCA效应值的杂交组合有8个,其中较优的组合为:C5大C14、C10和C13;SW变幅为-0.41~0.72,具有正向SCA效应值得杂交组合数10个,其中较优的组合为C5、C14和C13;WTS变幅为-0.48~0.73,具有正向SCA效应值的组合数有11个,其中较优的杂交组合为 C16、C3和 C2。CL、FL、FWD、FWH、SSF和SA的SCA效应值最高的杂交组合分别为C9、C2、C1、C18、C18和C14。进一步比较分析杂交组合的SCA值与亲本GCA值,结果显示杂交组合的SCA与亲本的GCA没有直接的相关性。例如,杂交组合C1的CL特殊配合力(SCA)效应值较高,但其母本的一般配合力(GCA)效应值为负值(-0.81),父本的一般配合力(GCA)效应值却为正值(0.27)。父本和母本GCA均较高的杂交组合,其杂交组合SCA效应值却为负值,如C6、C13的CL性状,其他性状也存在类似的情况(见表4)。

表4 桤木杂交组合特殊配合力(SCA)Tab.4 Special combining ability (SCA) of hybrid combinations in Alnus Mill.

2.4 遗传效应和遗传参数估算

从基因型方差和群体配合力方差可知,亲本各种实性状的群体配合力方差具有绝对优势,占总方差的53.59%(WTS)~100.00%(FWH),表明桤木属种间杂交子代种实性状的遗传中亲本基因加性效应起主导作用(见表5)。亲本群体配合力方差中,母本种实性状群体配合力方差具有绝对优势,占亲本群体配合力方差的 44.08%(WTS)~99.74%(FWH)。WTS的特殊配合力方差占群体配合力方差的46.41%,但亲本群体配合力方差略高于特殊配合力方差,说明该种子千粒重性状同时受加性和非加性基因的共同控制,但是以加性基因为主导。从各种实性状的遗传力来看,FL、FWD、FWH、SL和SW均具有较高的广义遗传力和狭义遗传力,均在50%以上。SA的广义遗传力较高,为75.67%,但狭义遗传力仅为11.07%;WTS广义遗传力较低,为20.66%,而其狭义遗传力高达63.96%。SSF的广义遗传力和狭义遗传力均较低,分别为18.41%和13.79%。

2.5 种实性状的杂种优势

从表6可以看出,桤木属种间杂交种实性状杂种优势不突出。除SSF的竞争优势较强外,其余种实性状均处于较低的水平。但仍有少部分杂交组合具较强的竞争优势,如C16的WTS竞争优势高达88.54%。具有正向竞争优势的杂交组合中,仅SSF具有正向竞争优势的杂交组合最多,为66.67%;FWD、FWH和WTS均只有一个杂交组合具有正向竞争优势,表明通过桤木属内种间杂交以获得种实性状杂种优势的难度较大。

表5 各种实性状的遗传参数Tab.5 Genetic parameters of nine seed and fruit traits

表6 18 个杂交组合的竞争优势分析Tab.6 Analysis on competitive advantage of 18 hybrid combinations

2.6 杂种优势与 GCA 和 SCA 的关系

相关分析结果表明,各种实性状的竞争优势与一般配合力(GCA)、特殊配合力(SCA)均呈正相关关系(见表7)。除FWH外,其余种实性状的特殊配合力(SCA)与杂种F1代竞争优势呈极显著的正相关相关关系。一般配合力(GCA)中,仅WTS竞争优势与一般配合力(GCA)呈极显著正相关关系,SSF竞争优势与一般配合力(GCA)呈显著正相关关系。综合分析,桤木属种间杂交杂种优势与杂交组合特殊配合力(SCA)和亲本一般配合力(GCA)均具有较为紧密的相关性。

3 讨论

一般配合力(GCA)由基因的加性效应决定,可以稳定遗传;特殊配合力(SCA)由基因非加性效应决定,只在特定的杂交组合中反映出来,是不能遗传的部分[14]。关于桤木育种程序中各性状的配合力研究,前人已做了一些探讨,不同的试验材料,其研究结果有所差异。杨汉波等[8]研究表明,桤木杂交子代苗期性状的基因加性效应与非加性效应均有重要作用,并根据一般配合力(GCA)和特殊配合力(SCA)初步筛选出优良亲本和杂交组合。桤木完全双列杂交试验中,杂交F1代种实性状主要受基因加性效应控制,苗期生长性状主要受基因非加性效应控制[9]。本文对桤木属内种间杂交亲本种实性状一般配合力(GCA)和特殊配合力(SCA)的研究结果表明,桤木属内种间杂交的种实性状遗传是以基因加性效应为主,其种子长度(SL)、宽度(SW)和千粒重(WTS)同时也受基因非加性效应影响。这与前人研究结果相一致。本研究发现,各种实性状中,杂交组合的特殊配合力(SCA)与亲本的一般配合力(GCA)并没有直接的关系。这进一步证实了刘青华等[15]、唐效蓉等[16]由2个GCA最高的亲本组配的自交组合,其SCA效应并不一定是最好的研究结果。种实性状中,FL、FWD和FWH的广义遗传力和狭义遗传力均处于十分高的水平,均在80%以上,因此,应在较早的世代对这些种实性状进行选择研究。

表7 种实性状竞争优势值与 GCA、SCA 相关分析Tab.7 Correlation analysis of competitive advantage of seed and fruit traits with GCA and SCA

配合力效应是杂种优势利用亲本选配的重要遗传基础,杂交组合的优势由双亲一般配合力效应(GCA)和杂交组合的特殊配合力效应(SCA)共同决定。已有研究表明,杂种优势的形成与亲本一般配合力(GCA)和杂交组合特殊配合力(SCA)具有重要的遗传相关[13]。如水稻杂交育种最佳亲本的类型应是具高的一般配合力(GCA)和特殊配合力(SCA)[17]。陈岳武等[18]认为表现较强的杂种优势的组合,是父母本GCA和杂交组合SCA联合作用的结果,杂交组合SCA值越大,该杂交组合就具有越高的杂种优势。本研究结果发现,桤木属种间杂交组合竞争优势与组合特殊配合力呈显著或极显著的正相关,其中2个性状与亲本一般配合力(GCA)呈显著正相关,具有较强的竞争优势的杂交组合的特点是双亲或亲本之一具有较高的一般配合了(GCA)效应,或较高的特殊配合力(SCA)效应。所以,桤木属内种间杂交杂种优势的重点在于对父母本GCA和组配的杂交组合的SCA的准确评估。从桤木属种间杂交亲本的GCA和杂交组合的SCA可以看出,ACjt04、ACjg00和AFhlt01、AGtc02在种子和果实表型性状上的GCA,及其组配的杂交组合的SCA值均较高,可以选择作为优良的杂交亲本材料。其中,ACjt04和AGtc02在单果出种数(SSF)和千粒重(WTS)主要种实性状上具有较为突出的亲本一般配合力(GCA)和组合特殊配合力(SCA)效应,这些材料应该在杂交育种工作中重点利用。

有关桤木属植物的杂种优势,郭洪英等[9]研究表明,高特殊配合力优势组合的苗高和地径分别可实现20.47%~76.22%和5.07%~43.18%的遗传增益。本研究结果表明,桤木属中间杂种组合中仅少部分组合的种实性状存在竞争优势,其中,单果出种数(SSF)具有竞争优势的杂交组合最多,竞争优势最高达101.79%;仅4个杂交组合表现出较强的竞争优势,可进一步开展评价研究。综合分析可知,通过桤木属内种间杂交以获取具有种子和果实表型性状较强竞争优势的苦难较大;但种实关键性状,如单果出种数(SSF)和千粒重(WTS)的竞争优势普遍存在,并且与父母本的GCA和杂交组合SCA值均具有较为密切的遗传关联。因此,在桤木新品种创制中,应充分利用现有的桤木属优良种源、家系或无性系选择和改良的遗传基础开展广泛的遗传交配设计,以进一步加强基于GCA的亲本选配和SCA的优良杂交组合选择,以保证最大限度的利用桤木属内种间杂交的杂种优势,寻求更大的突破。

猜你喜欢

种间配合力杂种优势
三峡库区支流花溪河浮游植物种间关联及影响因子分析
种间距离对玉米-大豆带状套作土壤理化性状及根系空间分布的影响
小蓬竹群落优势种群的种间联结
中国农业科学院系统总结蔬菜杂种优势的分子基础及育种策略
长白猪系间杂交初生重性状配合力分析
西瓜砧木自交系产量与品质性状配合力分析
种间嫁接对连作障碍土壤上咖啡生长及养分吸收特性的影响①
8个春小麦品种的主要农艺性状的配合力分析
三系杂交粳稻发展的历史与问题
水稻具有杂种优势:袁隆平科技创新的思想基石