活性氧调控作物种子发芽机理的研究进展
2020-07-14邓本良
邓本良
摘要 活性氧在协助作物种子打破休眠进而促进发芽过程中发挥着关键作用。此类活性分子能降解脱落酸以及氧化细胞中多种大分子物质从而促进种子进入发芽状态,这其中NADPH氧化酶介导的活性氧发挥着重要作用。介绍了活性氧种类、产生部位、毒害和信号功能,并阐述了包括H2O2在内的活性氧在调控作物种子打破休眠促进发芽方面的研究进展。
关键词 活性氧;种子发芽;脱落酸;NADPH 氧化酶
中图分类号 Q946文献标识码 A
文章编号 0517-6611(2020)13-0021-02
Abstract Reactive oxygen species play a key role in assisting crop seeds to break dormancy and promote germination.Such active molecules can degrade abscisic acid and oxidize a variety of macromolecular substances in the cells to promote the seeds to enter the germination state.Among them,NADPH oxidasemediated active oxygen plays an important role.The types,generation sites,poisons and signal functions of reactive oxygen species were introduced,and the research progress of reactive oxygen species including H2O2 in regulating crop seeds to break dormancy and promote germination was described.
Key words Reactive oxygen species;Seed germination;Abscisic acid;NADPH oxidase
成熟健康的作物种子在自然或人工条件下需要各种合适的内外条件才能发芽。内在条件包括有生命力且完整的胚,足够的营养储备以及非休眠状态;外在条件包括充足的水分,适宜的温度以及足够的氧气,少数需要充足的光照(如烟草和莴苣种子)。当种子打破休眠进入萌发阶段后,通常需要经历吸胀、水合与相关酶的活化,细胞分裂增长,胚突破种皮,最后长成幼苗[1-2]。为了帮助种子打破休眠,人们通常采取诸如冷水或热水浸泡,挫伤种皮,酸碱处理,超声波处理甚至冰冻处理等方法促进发芽[3]。研究发现,脱落酸和赤霉素这2种关键激素参与调控作物种子打破休眠而发芽。此外,某些小分子氧化剂如双氧水(H2O2)处理能加速脱落酸降解和赤霉素生成,从而迅速进入发芽状态[4]。事实上,作物种子在发芽过程中线粒体能产生大量H2O2,协助自身打破休眠而发芽。大量研究显示,高浓度H2O2在生物体内能造成大分子物质(如脂类、蛋白和核酸等)损伤,从而影响正常生长发育[5],但低浓度H2O2能起到类似于一氧化氮(NO)信号分子作用,调控植物多种生理功能,如种子发芽、植株生长、根的伸长、叶片扩展、种子的生成和老化等[6]。近年来,从激素到组学水平对种子发芽都有广泛深入研究[7-8],笔者基于前期研究工作,阐述包括H2O2 在内的活性氧(reactive oxygen species)在调控作物种子打破休眠促进发芽方面的研究进展[9-16]。
1 植物中的活性氧
1.1 活性氧种类和产生部位
一切有氧呼吸生物(包括动物、植物以及非厌氧微生物)在新陈代谢过程中因为氧分子未充分还原,获得多余电子,从而产生少量活性氧[5]。活性氧的种类有超氧阴离子自由基(O2·-)、过氧化氢(H2O2)、单线态氧(1O2)以及羟自由基(·OH)等[5]。在这些活性氧中,H2O2因为半衰期较长,能在细胞中存在较长时间,又能跨膜传递,所以成为较理想的信号分子[6]。在植物体内,能产生活性氧的部位主要是线粒体、过氧化物酶体、叶绿体(绿色光合细胞),以及介于细胞壁和细胞膜之间的胞质空间中的NADPH氧化酶和细胞膜上过氧化物酶等[17]。在这些能产活性氧的部位中,NADPH氧化酶因为位于细胞膜上,能够最早感应外界环境刺激,所以其产生的活性氧更多地充当了信号分子[18]。研究发现,多种环境胁迫因子都能激活该酶,产生超氧阴离子,并被胞质空间的超氧化物歧化酶(SOD)转化为H2O2,进而作用于下游级联信号途径发挥调控作用。
1.2 活性氧的毒害和信号功能
尽管活性氧含量极低,但是多种逆境胁迫(如干旱、盐害、UV、重金属毒害等)会诱导植物产生大量活性氧,因后者在细胞中得不到及时清除,所以会对多种生物大分子产生氧化损伤毒害,进而影响到细胞的正常功能,严重的甚至会导致细胞凋亡[5]。近年发现,低水平的活性氧可以起到信号分子作用,能激活植物的抗氧化防卫系统(antioxidant defense system),从而合成更多的活性氧清除酶(如SOD、CAT和APX等)和抗氧化物分子(如抗坏血酸、谷胱甘肽以及生育酚等)[5]。此外,在植物抵御真菌类病害过程中,活性氧在过敏反应(hypersensitive response)中发挥关键作用,并进而激活水杨酸信号途径发挥抗病作用[19]。
2 活性氧调控作物种子发芽
2.1 种子发芽产生活性氧的主要部位
尽管种子发芽受多种因素调控[20],但研究发现多种作物种子发芽都跟活性氧的产生有密切關系[21-22]。在作物种子发芽过程中,活性氧主要来自线粒体和胞质空间的NADPH氧化酶[23-25]。研究发现种子发芽过程中,线粒体会大量增生以产生足够ATP支撑种子萌发过程中的能量需求[26],但同时其产生活性氧也是种子打破休眠不可少的。然而,在逆境下产生过量活性氧也会造成严重氧化损伤从而导致种子发芽终止[23]。此外,来自于胞质空间的NADPH氧化酶产生的活性氧也是种子发芽所必需的[24]。研究发现,在正常条件下,利用该酶特异性抑制剂DPI (二联苯碘) 处理种子,会降低活性氧产生,从而显著降低种子发芽率[24]。此外,来自胞质空间其他的酶如胞外过氧化物酶以及超氧化物歧化酶所产活性氧同样在种子发芽过程中发挥着重要作用[25]。
2.2 活性氧調控种子发芽机理
一般来说,种子通过积累脱落酸而抑制赤霉素合成,从而维持种子处于休眠状态[20]。而当种子遇到合适的外界条件后,就会迅速进入萌发状态,其中一个成熟理论认为是活性氧将脱落酸迅速降解,并促进赤霉素合成基因的表达从而大量合成该激素[4,27]。因此,有学者提出活性氧甚至蛋白损伤促进种子发芽的假说[28-29]。如Oracz等[29]提出种子发芽过程中活性氧产生导致某些蛋白氧化损伤,从而帮助种子打破休眠进而萌发。后来进一步研究发现,不仅蛋白氧化损伤能促进种子打破休眠,而且mRNA氧化损伤[30]甚至脂类氧化损伤[10]也能帮助种子打破休眠从而促进萌发。然而,活性氧有双重功能,含量过高时会伤害植物细胞功能,只有处于较低水平才能起到信号分子作用[31]。对于种子发芽来说,过高的活性氧积累不利于种子发芽,但是过低的活性氧产生同样不利于种子发芽。所以有学者提出了“oxidative window for gerimination”假说,认为只有处于某个范围内的活性氧含量才能促进种子发芽,反之,过高或过低都将抑制种子进入发芽状态[32]。此外,种子发芽除了跟线粒体以及NADPH氧化酶产生的活性氧有关外,也与活性氧清除酶的活力有关。如通过抑制过氧化氢酶(H2O2清除酶)的活力,也能促进种子打破休眠,加速萌发[33]。
2.3 逆境下活性氧调控作物种子发芽
对于活性氧调控种子在逆境下发芽的研究目前较少。研究发现,在高温下或者高盐胁迫下,活性氧清除剂不能帮助种子打破休眠发芽,然而通过添加微量活性氧诱导剂如重金属甚至氧化乐果农药都能帮助种子在ABA-依赖性逆境胁迫下发芽[11,14]。然而,在ABA-非依赖性胁迫如高浓度铅离子毒害下,可以通过抑制NADPH氧化酶促进种子发芽[15]。
2.4 活性氧调控衰老作物种子发芽
衰老的作物种子可以用多种方法使其重新恢复活力,如用PEG溶液浸泡等[34]。 事实上,衰老种子重新恢复活力也与活性氧有密切关系[35]。老化的种子中不但有大量活性氧以及脂类氧化损伤物质积累[35],而且活性氧清除酶(尤其过氧化氢酶)活力也很低[36]。研究发现,用抗氧化剂如抗坏血酸或者还原型谷胱甘肽不能让人工老化的玉米种子重新恢复活力,但是用褪黑素处理可极显著地提高其活力[13]。
2.5 抗氧化物质含量对作物种子发芽的影响
相对于活性氧,抗氧化物质能帮助细胞清除过多的高活性小分子物质,从而使细胞处于一种合理的氧还平衡状态中。种子发芽过程中因为活性氧大量增生,所以也伴随着大量抗氧化物质的合成[37]。研究显示,不同颜色(白色、黄色、红色和紫色)的玉米种子发芽率和发芽速度相差极大[9,16]。有趣的是,在常温下深色玉米种子发芽能力低,而在逆境如高温下深色玉米种子发芽率反而高于浅色玉米种子。通过系列药理学和种子抗氧化能力检测发现深色种子抗氧化能力远远高于浅色种子。这也意味着与活性氧促进种子发芽相反,这类能清除活性氧的抗氧化物质起到抑制种子发芽的作用,然而其也在自然条件恶劣环境下对种子发芽起到保护作用[9]。
3 展望
种子发芽受多种因素如内源激素以及外部环境的调控。而活性氧在内外环境因子与激素调控之间起到一个很好的信号分子作用,其研究具有理论和生产实践上的价值。但是在活性氧调控种子发芽这一领域还有很多问题需要阐明:①活性氧在种子发芽调控过程中,NADPH氧化酶和线粒体介导的活性氧所扮演的角色是否类似还是有不同功能;②活性氧作为信号分子是如何调控下游的信号途径(如MAPK途径等)的;③活性氧与其他信号分子如一氧化氮在种子发芽过程中是如何协同工作的。
参考文献
[1]BEWLEY J D.Seed germination and dormancy[J].The plant cell,1997,9:1055-1066.
[2] WELBAUM G E,BRADFORD K J,YIM K O,et al.Biophysical,physiological and biochemical processes regulating seed germination[J].Seed science research,1998,8(2):161-172.
[3] MOUSAVI S R,REZAEI M,MOUSAVI A.A general overview on seed dormancy and methods of breaking it[J].Advances in environmental biology,2011,5(10):3333-3337.
[4] LIU Y G,YE N H,LIU R,et al.H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination[J].Journal of experimental botany,2010,61(11):2979-2990.
[5] GILL S S,TUTEJA N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant physiology and biochemistry,2010,48(12):909-930.
[6] QUAN L J,ZHANG B,SHI W W,et al.Hydrogen peroxide in plants:A versatile molecule of the reactive oxygen species network[J].Journal of integrative plant biology,2008,50(1):2-18.
[7] BOVE J,JULLIEN M,GRAPPIN P.Functional genomics in the study of seed germination [J].Genome biology,2001,3:1002-1005.
[8] MIERNYK J A,HAJDUCH M.Seed proteomics[J].Journal of proteomics,2011,74(4):389-400.
[9] DENG B L,YANG K J,ZHANG Y F,et al.The effects of temperature on the germination behavior of white,yellow,red and purple maize plant seeds[J].Acta physiologiae plantarum,2015,37:174-184.
[10] DENG B L,ZHANG Y F,YANG K J,et al.Changes in nonenzymatic antioxidant capacity and lipid peroxidation during germination of white,yellow and purple maize seeds[J].Pakistan journal of botany,2016,48:607-612.
[11] DENG B L,YANG K J,ZHANG Y F,et al.Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+,Cd2+ and Hg2+) on maize seed germination under high temperature[J].Environmental pollution,2016,216:46-52.
[12] DENG B L,ZHANG Y F,YANG K J,et al.The differential antioxidant capacity of watermelon flesh at different maturity stages and its inhibitory effects on seed aging may explain the significance of fruit flesh colors[J].Acta physiologiae plantarum,2017,39:139-145.
[13] DENG B L,YANG K J,ZHANG Y F,et al.Can antioxidants reactive oxygen species (ROS) scavenging capacity contribute to aged seed recovery? Contrasting effect of melatonin,ascorbate and glutathione on germination ability of aged maize seeds[J].Free radical research,2017,51:765-771.
[14] YANG K J,ZHANG Y F,ZHU L H,et al.Omethoate treatment mitigates high salt stress inhibited maize seed germination[J].Pesticide biochemistry and physiology,2018,144:79-82.
[15] ZHANG Y F,DENG B L,LI Z T.Inhibition of NADPH oxidase increases defense enzyme activities and improves maize seed germination under Pb stress[J].Ecotoxicology and environmental safety,2018,158:187-192.
[16] ZHANG Y F,SHI H J,DENG B L.Mutageninduced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity[J].Scientific reports,2018,8(1):1-10.
[17] MITTLER R,VANDERAUWERA S,GOLLERY M,et al.Reactive oxygen gene network of plants[J].Trends in plant science,2004,9(10):490-498.
[18] JIANG F,ZHANG Y,DUSTING G J.NADPH oxidasemediated redox signaling:Roles in cellular stress response,stress tolerance,and tissue repair[J].Pharmacological reviews,2011,63(1):218-242.
[19] TORRES M A,JONES J D G,DANGL J L.Reactive oxygen species signaling in response to pathogens[J].Plant physiology,2006,141:373-378.
[20] FINCHSAVAGE W E,LEUBNERMETZGER G.Seed dormancy and the control of germination[J].New phytologist,2006,171(3):501-523.
[21] JEEVAN KUMAR S P,RAJENDRA PRASAD S,BANERJEE R,et al.Seed birth to death:Dual functions of reactive oxygen species in seed physiology[J].Annals of botany,2015,116(4):663-668.
[22] GOMES M P, GARCIA Q S.Reactive oxygen species and seed germination[J].Biologia,2013,68:351-357.
[23] ZHENG C F,JIANG D,LIU F L,et al.Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity[J].Environmental and experimental botany,2009,67(1):222-227.
[24] ISHIBASHI Y,TAWARATSUMIDA T,ZHENG S H,et al.NADPH oxidases act as key enzyme on germination and seedling growth in barley (Hordeum vulgare L.)[J].Plant production science,2010,13(1):45-52.
[25] KRANNER I,ROACH T,BECKETT R P,et al.Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum[J].Journal of plant physiology,2010,167(10):805-811.
[26] LAW S R,NARSAI R,WHELAN J.Mitochondrial biogenesis in plants during seed germination[J].Mitochondrion,2014,19:214-221.
[27] ISHIBASHI Y,KASA S,SAKAMOTO M,et al.A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination[J].PLoS One,2015,10(11):1-17.
[28] OGAWA K,IWABUCHI M.A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide[J].Plant and cell physiology,2001,42(3):286-291.
[29] ORACZ K,ELMAAROUFBOUTEAU H,FARRANT J M,et al.ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation[J].The plant journal,2007,50(3):452-465.
[30] ELMAAROUFBOUTEAU H,MEIMOUN P,JOB C,BAILLY C,et al.Role of protein and mRNA oxidation in seed dormancy and germination[J].Frontiers in plant science,2013,4:1-5.
[31] MITTLER R,VANDERAUWERA S,SUZUKI N,et al.ROS signaling:The new wave?[J].Trends in plant science,2011,16(6):300-309.
[32] BAILLY C,ELMAAROUFBOUTEAU H,CORBINEAU F.From intracellular signaling networks to cell death:The dual role of reactive oxygen species in seed physiology[J].Comptes rendus biologies,2008,331(10):806-814.
[33] BAJJI M,MHAMDI M,GASTINY F,et al.Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers[J].Biotechnologie,agronomie,société et environnement,2007,11:121-131.
[34] VARIER A,VARI A K,DADLANI M.The subcellular basis of seed priming[J].Current science,2010,99(4):450-456.
[35] PARKHEY S,NAITHANI S C,KESHAVKANT S.ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging[J].Plant physiology and biochemistry,2012,57:261-267.
[36] KIBINZA S,BAZIN J,BAILLY C,et al.Catalase is a key enzyme in seed recovery from ageing during priming[J].Plant science,2011,181(3):309-315.
[37] BAILLY C.Active oxygen species and antioxidants in seed biology[J].Seed science research,2004,14:93-107.