轻度认知障碍危险因素研究进展
2020-07-04张丽娜张俊青侯继文郭宗君
张丽娜 张俊青 侯继文 郭宗君
[摘要] 轻度认知障碍(MCI)是痴呆的早期阶段,指记忆力或其他认知功能进行性减退,但不影响日常生活能力,且未达到痴呆的诊断标准。近年来,越来越多的研究表明,MCI与诸多因素相关,如生活方式、系统性疾病、慢性炎症、肠道微生态及遗传因素等。本文对国内外相关研究进展进行综述,旨在识别有罹患认知障碍风险者,以实施早期干预和治疗。
[关键词] 认知功能障碍;危险因素;综述
[中图分类号] R741;R181.13
[文献标志码] A
[文章编号] 2096-5532(2020)03-0331-06
doi:10.11712/jms.2096-5532.2020.56.114
[开放科学(资源服务)标识码(OSID)]
[网络出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200610.1355.002.html;2020-06-11 11:21
RESEARCH ADVANCES IN RISK FACTORS FOR MILD COGNITIVE IMPAIRMENT
ZHANG Lina, ZHANG Junqing, HOU Jiwen, GUO Zongjun
(Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao 266100, China)
[ABSTRACT]
Mild cognitive impairment (MCI) is an early stage of dementia and refers to the progressive deterioration of memory or other cognitive functions which does not affect the activities of daily living and does not meet the diagnostic criteria for dementia. In recent years, more and more studies have shown that MCI is associated with many factors, such as lifestyle, systemic diseases, chronic inflammation, intestinal microecology, and genetic factors. This article reviews the relevant research advances, aiming to identify the people at a risk of cognitive impairment and implement early intervention and treatment.
[KEY WORDS]cognitive dysfunction; risk factors; review
随着人口老龄化进程的加快,老年痴呆人数急剧增多,不但严重危害老年人身体健康,也给家庭和社会增加了沉重的经济和精神负担。轻度认知障碍(MCI)是痴呆前期的重要一环。目前,有关MCI的发病机制尚不十分清楚,但是越来越多的证据表明,其发生、发展是遗传和环境等多因素相互作用的结果。本文对MCI的相关影响因素进行综述,旨在为MCI的诊断和防治提供依据。
1 MCI概述
美国神经病学学会(AAN)在2018年对MCI指南进行了更新,将MCI定义为:个体在日常生活工具活动能力受损程度最小的情况下表现出的认知损害[1]。《中国痴呆与认知障碍诊治指南》对MCI的诊断标准如下:①病人或知情者报告,或有经验的临床医师发现认知的损害;②存在一个或多个认知功能域损害的客观证据(来自认知测验);③复杂的工具性日常能力可以有轻微损害,但保持独立的日常生活能力;④尚未达到痴呆的诊断标准。
2 MCI的危险因素
研究表明,MCI与诸多因素相关,如生活方式、慢病因素、慢性炎症、肠道微生态及遗传因素等[2-84]。
2.1 生活方式对MCI的影响
2.1.1 肥胖及饮食方式 HORIE等[2]发现,65岁以下的肥胖与痴呆事件呈正相关,65岁及以上人群则相反。而LEE等[3]探讨饮食习惯和体质量指数(BMI)与痴呆关系的全国性调查结果显示,与正常BMI者(18 kg/m2 2.1.2 受教育程度和压力 高等教育是预防痴呆症的一个保护性因素,这可能与健康意识的增强导致他们更早地进行咨询有关[6]。而另一项研究结果却显示,MCI病人的高职业成就是MCI进展至痴呆的独立危险因素[7],这可能与高职业成就承受更大的压力有关,这与相关研究压力使MCI事件风险增加的结论一致[8-9]。 2.1.3 吸煙和饮酒 吸烟是认知障碍的高危因素,吸烟可导致基底前脑的胆碱能输入区域萎缩,增加痴呆的风险[10]。法国一项全国性回顾性队列研究结果显示,乙醇是痴呆的危险因素,特别是早发痴呆[11]。
2.1.4 睡眠和听力障碍 有关老年睡眠问题与MCI的相关研究近年来增多。其中快动眼睡眠行为障碍(RBD)是一个重要因素,JOZWIAK等[12]研究显示,患有RBD的帕金森病(PD)病人MCI诊断率是没有RBD的PD病人的3倍。阻塞性睡眠呼吸暂停也可能是发生MCI的危险因素[13]。不久前发表的一项荟萃分析也得出结论,年龄相关的听力损失是认知衰退的风险因素[14]。
2.1.5 久坐和缓慢步态 久坐行为也与较差的认知表现有关[15],VANCAMPFORT等[16]就久坐行为与MCI的关系开展了一项横跨6个国家、纳入34 129名参与者的调查研究,结果表明,久坐不动的生活方式可能是MCI的可调节危险因素。DOI等[17]还发现,缓慢步态会增加MCI向痴呆进展的风险。
2.1.6 性别及其他生活因素 DAVEY[18]发现,MCI和痴呆在女性中比在男性中更常见。最近的一项荟萃分析也得出相似结论[19]。诸多学者研究表明,高龄、受教育程度低、患糖尿病、患高血压、患高脂血症及吸烟史等生活因素对MCI的患病率具有明显的影响[20-21]。
2.2 神经系统病变
老年人常见的神经系统慢性病变如脑微血管病变及PD与MCI相关性研究较为多见。
2.2.1 脑微血管疾病 脑灌注不足与认知能力加速下降和痴呆风险增加有明确关联[22],脑微血管病变会引起慢性脑低灌注并加速神经退行性变化[23],这可能是微血管损伤导致认知障碍的关键环节。有学者将研究扩展至外周动脉,结果显示动脉硬化是痴呆的危险因素。原因可能为:一方面动脉硬化将主动脉压向远端血管传递,损害大脑和肾脏的微血管结构[24];另一方面动脉硬化可能降低区域脑血流量[25],继而损伤脑组织及神经细胞。
2.2.2 PD PD也是伴隨衰老出现的神经退行性疾病,已有研究证明PD病人多数伴有认知功能障碍。一项针对PD病人的队列研究发现,10%的PD病人患有痴呆症,另有57%的PD病人表现出认知障碍[26-27]。BUCKLEY等[28]发现,主观认知衰退(SCD)也可能与MCI的风险增加有关。梅奥诊所最近一项研究也显示SCD与MCI相关联[29]。
2.2.3 PD伴MCI 大多数PD伴有MCI,最新研究表明,高学历是PD伴MCI的保护因素,衰老、严重的运动症状和高半胱氨酸血症是PD伴MCI的危险因素[30]。PD伴MCI与年龄增加、男性性别和较低的教育程度有关[31],运动疾病的严重程度、运动僵化的表型[32]和代谢综合征(MS)的并发症[33]似乎也与PD的认知能力下降有关。相反,在中年进行更高水平的体育锻炼,包括力量、有氧运动和平衡训练,与PD的风险降低有关[34]。缺乏运动和MS也被认为是PD的可能致病机制[35]。
2.3 精神疾病
抑郁与认知障碍的联系一直以来都是认知风险因素的研究热点。研究发现,抑郁和MCI拥有共同的病理生理机制,包括伴有异常肿瘤坏死因子-α信号传导的神经炎症,以及脑源性神经营养因子和转化生长因子-β1(TGF-β1)的损伤等。这一发现支持了抑郁与MCI和痴呆风险相关的结论[36]。抑郁与前额区进行性萎缩的相关性可能是促使MCI转变为痴呆的另一关键环节[37]。许多患有MCI的人同时患有焦虑症,有研究结果表明,焦虑与认知障碍和痴呆风险增加有关[38]。谵妄与认知功能下降也存在密切联系,一项荟萃分析回顾了9项已发表的研究,其中有5项研究结果显示谵妄与认知功能下降相关[39]。
2.4 心脏病变
心血管疾病也是认知障碍和阿尔茨海默病(AD)发生发展的主要危险因素。老年人的心血管疾病,例如心房颤动(AF)、心力衰竭、动脉硬化性心脏病等与MCI的发生和进展密不可分。
2.4.1 AF AF病人认知障碍相关因素近来备受关注。一项包含6 432名参与者的研究结果表明,AF病人的MCI 患病率高于无AF病人[40]。黎计明等[41]研究表明,AF是认知功能下降的独立危险因素。另一项前瞻性研究结果有助于确定心脏结构和功能的变化是在淀粉样蛋白沉积之前发生还是同时发生的[42]。也有学者研究证明,低心脏指数与较低静息颞叶脑血流量相关[43],这为脑血流量与认知障碍相关性提供了有力证据。
2.4.2 心力衰竭 心力衰竭与认知功能衰退也有密切关联。WITT等[44]研究显示,心力衰竭病人的痴呆和MCI患病率高于没有心力衰竭者。ALONSO等[45]研究结果显示,在没有明显心力衰竭的观察者中,较高的N末端B型利钠肽原(NT-proBNP)水平与MCI相关。
2.4.3 动脉硬化性心脏病 动脉硬化会引起脑血管病变,老年人主动脉硬化降低其脑血流量,增高脑血管反应性[25],导致脑组织供血供氧不足,使神经细胞发生不可逆损伤及退行性病变。近期研究表明,中年人的心血管风险与老年时较低的灰质灌注显著相关,这有力地说明了心血管健康状况低下是痴呆症的危险因素[46]。
2.5 其他慢性疾病因素
2.5.1 MS MS包括肥胖、葡萄糖耐受不良、高血压和血脂异常等。越来越多的研究结果表明,MS会增加认知功能障碍的风险,并且与认知功能障碍的严重程度显著相关[47-49],不仅如此,2型糖尿病病人的平衡功能和工作记忆功能也同时受损[50]。据文献报道,低糖血症可能导致部分糖尿病病人痴呆症的高风险[51]。
2.5.2 肾脏代谢 目前诸多学者对肾脏代谢与认知障碍和痴呆进行关联性分析,发现肾功能受损时,肌酐和尿素氮水平、肾小球滤过率(eGFR)及尿蛋白/肌酐比率等与认知障碍相关[52-56]。有研究表明,肾功能受损的严重程度与认知功能受损有关[54],eGFR越小,发生认知障碍的风险越高[55]。
2.5.3 血浆同型半胱氨酸、叶酸、维生素水平 有研究显示,低水平的叶酸和维生素B以及升高的同型半胱氨酸水平与老年人的MCI和AD显著相关[56-57]。最近一项为期6年的研究表明,较高的蛋氨酸与半胱氨酸之比可能对降低脑萎缩率和痴呆风险具有重要意义[58]。
2.5.4 脑与甲状腺代谢指标 据报道,AD病人的脑脊液和血浆中凝聚素水平升高,对此做进一步的研究发现,MCI病人血浆凝聚素水平升高会增加进展为AD的风险[59]。有研究结果表明,甲状腺功能与皮质下缺血性血管病诱导的认知障碍有关[60]。在此之前已发现,较低的血清促甲状腺激素水平与AD风险相关[61],血清游离三碘甲状腺素水平与AD风险呈线性负相关[62]。
2.5.5 ω-3脂肪酸与其他营养因子 有研究结果显示,ω-3脂肪酸指数与MCI的患病率呈负相关[63]。最近有研究結果也表明,ω-3脂肪酸、维生素、叶酸等可以降低MCI转化为AD的风险[64]。
2.5.6 微量元素 有研究结果显示,在MCI病人中铁血清水平略微增加,而在AD病人中其水平突然下降[65]。以往认为,痴呆病人的锰水平逐渐升高,镁水平逐渐降低。然而有研究结果显示,锰缺乏可能是AD的危险因素[66],低水平的血清磷与脑β-淀粉样蛋白(Aβ)沉积相关[67]。有荟萃分析表明,AD病人血清铜水平显著升高,血清锌和铁水平则显著降低[68]。然而,微量元素与认知障碍的定性及定量联系还需要进一步研究。
2.6 慢性炎症和肠道微生态
2.6.1 慢性炎症因子 CESTARI等[69]研究显示,AD病人血清白细胞介素(IL)-6水平较高。还有研究表明,高水平的IL-10和IL-12与淀粉样蛋白沉积显著相关[70]。也有研究显示,在进展为AD的MCI病人的脑脊液中Aβ水平显著降低,而t-Tau、p-Tau和载脂蛋白Eε4(ApoE4)等位基因频率显著升高[71]。抗炎细胞因子TGF-β1对Aβ诱导的神经变性发挥神经保护作用[72]。
2.6.2 肠道微生态 近年来,大量研究结果揭示了肠道微生态在衰老、认知障碍和AD的发生和进展中发挥重要作用。最近的一项临床试验结果表明,AD可能在肠道中开始,并且与肠道微生态失衡密切相关[73]。其导致痴呆和AD的脑破坏机制可能包括以下3个方面:始于肠道的微生物组织生态失调、局部和全身炎症的发展以及肠-脑轴的失调等[74]。
2.7 遗传因素
2.7.1 ApoE4 ApoEε4等位基因是AD中已知最强的常见遗传风险因子,诸多研究结果表明,ApoEε4状态可以预测老年人MCI或AD的进展风险,并且这种风险随年龄而变化[75-79]。
除ApoEε4之外,COLLINS还发现葡糖脑苷脂酶和微管相关蛋白tau、儿茶酚-O-甲基转移酶与PD中痴呆的进展也有关联[80]。
另有研究显示,相对于正常老年人,MCI病人的血浆神经元五聚蛋白1(NP1)水平升高[81]。
2.7.2 其他因子 如IL、人白细胞抗原(HLA)、凝聚素等也可能与MCI有关。在一项研究中,IL-10基因启动子单倍型携带者遗忘型MCI受试者的脑功能迅速下降,表明IL-10基因启动子单倍型可能是遗忘型MCI发展的重要风险因子[82]。另一项研究也证明,高水平的IL-10和IL-12与淀粉样蛋白沉积显著相关[70]。STEELE等[83]的研究表明,HLA基因的变异增加了AD风险。另外有研究发现,凝聚素中的单核苷酸多态性是MCI向AD进展的潜在标志物[84]。
3 小结
综上所述,诸多因素与MCI关系密切,各因素之间相互交叉、互为因果。MCI是痴呆的高危人群,具有高度进展为AD的风险,痴呆与MCI的病因和危险因素基本上是一致的。2018年中国痴呆与认知障碍指南中指出,痴呆的病因包括年龄、性别、遗传因素、家族史、心脑血管因素、生活因素、MS、教育水平等,还指出痴呆具有家族聚集性,这可能是遗传因素和环境因素共同作用的结果[85]。痴呆的早期发现并控制其可干预的危险因素,对预防MCI的发生、延缓其向痴呆的进展及改善痴呆的预后意义重大。因此,在寻求更加具体、统一的诊断及治疗标准的同时,开展MCI相关危险因素的防治研究也显得尤为重要。
[参考文献]
[1]PETERSEN R C, LOPEZ O, ARMSTRONG M J, et al. Practice guideline update summary: mild cognitive impairment: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology[J]. Neurology, 2018,90(3):126-135.
[2]HORIE N C, SERRAO V T, SIMON S S, et al. Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment[J]. J Clin Endocrinol Metab, 2016,101(3):1104-1112.
[3]LEE C Y, SUN Y, LEE H J, et al. Modest overweight and healthy dietary habits reduce risk of dementia: a nationwide survey in Taiwan[J]. J Prev Alzheimers Dis, 2017,4(1):37-43.
[4]ABBATECOLA A M, RUSSO M, BARBIERI M. Dietary patterns and cognition in older persons[J]. Curr Opin Clin Nutr Metab Care, 2018,21(1):10-13.
[5]VAUZOUR D, CAMPRUBI-ROBLES M, MIQUEL-KERGOAT S, et al. Nutrition for the ageing brain: towards evidence for an optimal diet[J]. Ageing Research Reviews, 2017,35:222-240.
[6]TREVES T A, PARMET Y, KLIMOVITZKY S, et al. The effect of schooling on reported age of onset of cognitive decline: a collaborative study[J]. Journal of Clinical Neuroscience, 2016,34:86-88.
[7]MYUNG W, LEE C, PARK J H, et al. Occupational attainment as risk factor for progression from mild cognitive impairment to Alzheimers disease: a CREDOS study[J]. Journal of Alzheimers Disease, 2016,55(1):283-292.
[8]KATZ M J, DERBY C A, WANG C L, et al. Influence of perceived stress on incident amnestic mild cognitive impairment: results from the Einstein aging study[J]. Alzheimer Dis Assoc Disord, 2016,30(2):93-98.
[9]SINDI S, HAGMAN G, HKANSSON K, et al. Midlife work-related stress increases dementia risk in later life: the CAIDE 30-year study[J]. The Journals of Gerontology. SeriesB, Psychological Sciences and Social Sciences, 2017,72(6):1044-1053.
[10]TEIPEL S, GROTHE M J. Association between smoking and cholinergic basal forebrain volume in healthy aging and prodromal and dementia stages of Alzheimers disease[J]. Journal of Alzheimers Disease, 2016,52(4):1443-1451.
[11]SCHWARZINGER M, POLLOCK B G, HASAN O S M, et al. Contribution of alcohol use disorders to the burden of dementia in France 2008-13: a nationwide retrospective cohort study[J]. The Lancet Public Health, 2018,3(3):e124-e132.
[12]JOZWIAK N, POSTUMA R B, MONTPLAISIR J, et al. REM sleep behavior disorder and cognitive impairment in Parkinsons disease[J]. Sleep, 2017,40(8):8.
[13]FERINI-STRAMBI L, LOMBARDI G E, MARELLI S, et al. Neurological deficits in obstructive sleep apnea[J]. Curr Treat Options Neurol, 2017,19(4):16.
[14]LOUGHREY D G, KELLY M E, KELLEY G A, et al. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia[J]. JAMA Otolaryngology-Head & Neck Surgery, 2018,144(2):115-126.
[15]FALCK R S, LANDRY G J, BEST J R, et al. Cross-sectional relationships of physical activity and sedentary behavior with cognitive function in older adults with probable mild cognitive impairment[J]. Physical Therapy, 2017,97(10):975-984.
[16]VANCAMPFORT D, STUBBS B, LARA E, et al. Mild cognitive impairment and sedentary behavior: a multinational study[J]. Experimental Gerontology, 2018,108:174-180.
[17]DOI T, MAKIZAKO H, TSUTSUMIMOTO K, et al. Combined effects of mild cognitive impairment and slow gait on risk of dementia[J]. Exp Gerontol, 2018,110:146-150.
[18]DAVEY D A. Alzheimers disease, dementia, mild cognitive impairment and the menopause: a ‘window of opportunity[J]? Womens Heal Lond Engl, 2013,9(3):279-290.
[19]NEBEL R A, AGGARWAL N T, BARNES L L, et al. Understanding the impact of sex and gender in Alzheimers di-
sease: a call to action[J]. Alzheimers Dement: J Alzheimers Assoc, 2018,14(9):1171-1183.
[20]陈定华,瞿正万,江琦,等. 社区老年人轻度认知功能损害危险因素调查[J]. 中华行为医学与脑科学杂志, 2013,22(5):413-416.
[21]骆雄,唐牟尼,沈银,等. 社区轻度认知功能障碍的患病影响因素研究[J]. 中华老年心脑血管病杂志, 2015,17(3):227-230.
[22]WOLTERS F J, ZONNEVELD H I, HOFMAN A, et al. Cerebral perfusion and the risk of dementia: a population-based study[J]. Circulation, 2017,136(8):719-728.
[23]URBANOVA B S, SCHWABOVA J P, MAGEROVA H, et al. Reduced cerebrovascular reserve capacity as a biomarker of microangiopathy in Alzheimers disease and mild cognitive impairment[J]. J Alzheimers Dis: JAD, 2018,63(2):465-477.
[24]HUGHES T M, WAGENKNECHT L E, CRAFT S, et al. Arterial stiffness and dementia pathology: Atherosclerosis Risk in Communities (ARIC)-PET Study[J]. Neurology, 2018,90(14):e1248-e1256.
[25]JEFFERSON A L, CAMBRONERO F E, LIU D D, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults[J]. Circulation, 2018,138(18):1951-1962.
[26]WILLIAMS-GRAY C H, FOLTYNIE T, BRAYNE C E, et al. Evolution of cognitive dysfunction in an incident Parkin-
sons disease cohort[J]. Brain: a Journal of Neurology, 2007,130(Pt 7):1787-1798.
[27]梁雄壯. 帕金森氏病认知功能障碍临床研究[J]. 河北医学, 2016,22(1):23-25.
[28]BUCKLEY R F, MARUFF P, AMES D, et al. Subjective memory decline predicts greater rates of clinical progression in preclinical Alzheimers disease[J]. Alzheimers & Dementia, 2016,12(7):796-804.
[29]VAN HARTEN A C, MIELKE M M, SWENSON-DRAVIS D M, et al. Subjective cognitive decline and risk of MCI:the Mayo Clinic Study of Aging[J]. Neurology, 2018,91(4):e300-e312.
[30]NIE K, GAO Y Y, MEI M J, et al. The clinical characteristics and cognitive features of mild cognitive impairment in Parkinsons disease and the analysis of relevant factors[J]. J Clin Neurosci: Off J Neurosurg Soc Australas, 2019,63:142-148.
[31]PALAVRA N C, NAISMITH S L, LEWIS S J G. Mild cognitive impairment in Parkinsons disease: a review of current concepts[J]. Neurol Res Int, 2013, 2013(8):576091.
[32]WOJTALA J, HEBER I A, NEUSER P, et al. Cognitive decline in Parkinsons disease: the impact of the motor phenotype on cognition[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2019,90(2):171-179.
[33]PENG Z Y, DONG S Y, TAO Y, et al. Metabolic syndrome contributes to cognitive impairment in patients with Parkinsons disease[J]. Park Relat Disord, 2018,55(10):68-74.
[34]MANTRI S, FULLARD M E, DUDA J E, et al. Physical activity in early parkinson disease[J]. J Park Dis, 2018,8(1):107-111.
[35]LAHUE S C, COMELLA C L, TANNER C M. The best medicine? The influence of physical activity and inactivity on Parkinsons disease[J]. Mov Disord: Off J Mov Disord Soc, 2016,31(10):1444-1454.
[36]KORTHAUER L E, GOVEAS J, ESPELAND M A, et al. Negative affect is associated with higher risk of incident cognitive impairment in nondepressed postmenopausal women[J]. Journals Gerontol Ser A Biol Sci Med Sci, 2018,73(4):506-512.
[37]SACUIU S, INSEL P S, MUELLER S, et al. Chronic depressive symptomatology in mild cognitive impairment is associated with frontal atrophy rate which hastens conversion to Alzheimer dementia[J]. Am J Geriatr Psychiatry: Off J Am Assoc Geriatr Psychiatry, 2016,24(2):126-135.
[38]GULPERS B, RAMAKERS I, HAMEL R, et al. Anxiety as a predictor for cognitive decline and dementia: a systematic review and meta-analysis[J]. The American Journal of Geriatric Psychiatry, 2016,24(10):823-842.
[39]JACKSON J C, GORDON S M, HART R P, et al. The association between delirium and cognitive decline: a review of the empirical literature[J]. Neuropsychology Review, 2004,14(2):87-98.
[40]ALONSO A, KNOPMAN D, GOTTESMAN R, et al. Correlates of dementia and mild cognitive impairment in patients with atrial fibrillation: the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS) [J]. J Am Heart Assoc, 2017,6(7):e006014.
[41]黎計明,罗伟良. 60岁以上非瓣膜性房颤住院患者无症状性脑梗死与轻度认知障碍的临床研究[J]. 中国神经精神疾病杂志, 2016,42(8):473-478.
[42]JOHANSEN M C, MOSLEY T H, KNOPMAN D S, et al. Associations between left ventricular structure, function, and cerebral amyloid: the ARIC-PET study[J]. Stroke, 2019,50(12):3622-3624.
[43]JEFFERSON A L, LIU D D, GUPTA D K, et al. Lower cardiac index levels relate to lower cerebral blood flow in older adults[J]. Neurology, 2017,89(23):2327-2334.
[44]WITT L S, ROTTER J, STEARNS S C, et al. Heart failure and cognitive impairment in the atherosclerosis risk in communities (ARIC) study[J]. J Gen Intern Med, 2018,33(10):1721-1728.
[45]ALONSO A, KNOPMAN D S, GOTTESMAN R F, et al. Correlates of dementia and mild cognitive impairment in patients with atrial fibrillation: the atherosclerosis risk in communities neurocognitive study (ARIC-NCS)[J]. Journal of the American Heart Association, 2017,6(7):e006014.
[46]SURI S N, TOPIWALA A, CHAPPELL M A, et al. Asso-
ciation of midlife cardiovascular risk profiles with cerebral perfusion at older ages[J]. JAMA Netw Open, 2019,2(6):e195776.
[47]WANG Q Z, YUAN J, YU Z Y, et al. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice[J]. Molecular Neurobiology, 2018,55(6):4702-4717.
[48]LI W, WANG T, XIAO S F. Type 2 diabetes mellitus might be a risk factor for mild cognitive impairment progressing to Alzheimers disease[J]. Neuropsychiatr Dis Treat, 2016,12:2489-2495.
[49]LI W, RISACHER S L, HUANG E, et al. Type 2 diabetes mellitus is associated with brain atrophy and hypometabolism in the ADNI cohort[J]. Neurology, 2016,87(6):595-600.
[50]GORNIAK S L, LU F Y, LEE B C, et al. Cognitive impairment and postural control deficit in adults with type 2 diabetes[J]. Diabetes/metabolism Res Rev, 2019,35(2):3089.
[51]MEHTA H B, MEHTA V, GOODWIN J S. Association of hypoglycemia with subsequent dementia in older patients with type 2 diabetes mellitus[J]. Journals Gerontol Ser A Biol Sci Med Sci, 2019,74(5):750.
[52]KUNSCHMANN R, BUSSE S, FRODL T, et al. Psychotic symptoms associated with poor renal function in mild cognitive impairment and dementias[J]. J Alzheimers Dis: JAD, 2017,58(1):243-252.
[53]OH Y S, KIM J S, PARK J W, et al. Arterial stiffness and impaired renal function in patients with Alzheimers disease[J]. Neurological Sciences, 2016,37(3):451-457.
[54]MANSSON T, OVERTON M, PIHLSGARD M, et al. Impaired kidney function is associated with lower cognitive function in the elder general population. Results from the Good Aging in Skne (GS) cohort study[J]. BMC geriatrics, 2019,19(1):360.
[55]TORRES R V, ELIAS M F, SELIGER S, et al. Risk for cognitive impairment across 22 measures of cognitive ability in early-stage chronic kidney disease[J]. Nephrology Dialysis Transplantation, 2017,32(2):299-306.
[56]TAN B, VENKETASUBRAMANIAN N, VROOMAN H, et al. Homocysteine and cerebral atrophy: the epidemiology of dementia in Singapore study[J]. J Alzheimers Dis: JAD, 2018,62(2):877-885.
[57]MA F, WU T F, ZHAO J G, et al. Plasma homocysteine and serum folate and vitamin B12 levels in mild cognitive impairment and Alzheimers disease: a case-control study[J]. Nut-
rients, 2017,9(7):725.
[58]HOOSHMAND B, REFSUM H, SMITH A D, et al.Association of methionine to homocysteine status with brain magnetic resonance imaging measures and risk of dementia[J]. JAMA Psychiatry, 2019:76(11):1-9.
[59]JONGBLOED W, VAN DIJK K D, MULDER S D, et al. Clusterin levels in plasma predict cognitive decline and progression to Alzheimers disease[J]. J Alzheimers Dis: JAD, 2015,46(4):1103-1110.
[60]CHEN Z S, LIANG X F, ZHANG C X, et al. Correlation of thyroid dysfunction and cognitive impairments induced by subcortical ischemic vascular disease[J]. Brain Behav, 2016,6(4):452.
[61]HU Y, WANG Z C, GUO Q H, et al. Is thyroid status associated with cognitive impairment in elderly patients in China[J]? BMC Endocr Disord, 2016,16:11.
[62]QUINLAN P, HORVATH A, WALLIN A, et al. Low se-
rum concentration of free triiodothyronine (FT3) is associated with increased risk of Alzheimers disease[J]. Psychoneuroendocrinology, 2019,99:112-119.
[63]NUNES B, PINHO C, SOUSA C, et al. Relevance of Omega-3 and Omega-6/Omega-3 ratio in preventing cognitive impairment[J]. Acta Med Portuguesa, 2017,30(3):213-223.
[64]KEMSE N, KALE A, CHAVAN-GAUTAM P, et al. Increased intake of vitamin B12, folate, and Omega-3 fatty acids to improve cognitive performance in offspring born to rats with induced hypertension during pregnancy[J]. Food & Function, 2018,9(7):3872-3883.
[65]BALMUI M, STRUNGARU S A, CIOBICA A, et al. Preliminary data on the interaction between some biometals and oxidative stress status in mild cognitive impairment and Alz-
heimers disease patients[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017:7156928.
[66]DU K, LIU M Y, PAN Y Z, et al. Association of serum manganese levels with Alzheimers disease and mild cognitive impairment: a systematic review and meta-analysis[J]. Nut-
rients, 2017,9(3):E231.
[67]PARK J C, HAN S H, BYUN M S, et al. Low serum phosphorus correlates with cerebral aβ deposition in cognitively impaired subjects:results from the KBASE study[J]. Front Aging Neurosci, 2017,9:362.
[68]LI D D, ZHANG W, WANG Z Y, et al. Serum copper, zinc, and iron levels in patients with Alzheimers disease: a meta-analysis of case-control studies[J]. Frontiers in Aging Neuroscience, 2017,9:300.
[69]CESTARI J A F, FABRI G M C, KALIL J, et al. Oral infections and cytokine levels in patients with Alzheimers disease and mild cognitive impairment compared with controls[J]. J Alzheimers Dis: JAD, 2016,52(4):1479-1485.
[70]PEDRINI S, GUPTA V B, HONE E, et al. A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort[J]. Scientific Reports, 2017,7(1):14057.
[71]GABRIEL A J, ALMEIDA M R, RIBEIRO M H, et al. Inf-
luence of butyrylcholinesterase in progression of mild cognitive impairment to Alzheimers disease[J]. J Alzheimers Dis: JAD, 2018,61(3):1097-1105.
[72]CARACI F, SPAMPINATO S F, MORGESE M G, et al. Neurobiological links between depression and AD: the role of TGF-β1 signaling as a new pharmacological target[J]. Pharmacological Research, 2018,130:374-384.
[73]HU X, WANG T, JIN F. Alzheimers disease and gut microbiota[J]. Sci China Life Sci, 2016,59(10):1006-1023.
[74]SOCHOCKA M, DONSKOW-YSONIEWSKA K, DINIZ B S, et al. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimers disease: a critical review[J]. Molecular Neurobiology, 2019,56(3):1841-1851.
[75]BONHAM L W, GEIER E G, FAN C C, et al. Age-depen-
dent effects of APOE ε4 in preclinical Alzheimers disease[J]. Ann Clin Transl Neurol, 2016,3(9):668-677.
[76]SCARABINO D, BROGGIO E, GAMBINA G, et al. Apolipoprotein E genotypes and plasma levels in mild cognitive impairment conversion to Alzheimers disease: a follow-up study[J]. Am J Med Genet Part B Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet, 2016,171(8):1131-1138.
[77]CHEN J, XIA Y, GAO C L, et al. Genes polymorphism of BIN1 and ApoE in patients with amnestic mild cognitive impairment from Enshi Tujia area[J]. Zhonghua Yi Xue Za Zhi, 2018,98(17):1322-1326.
[78]MATTSSON N, GROOT C, JANSEN W, et al. Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimers disease[J]. Alzheimers Dement, 2018,14(7):913-924.
[79]WANG H Y, TROCM-THIBIERGE C, STUCKY A, et al. Increased Aβ42-α7-like nicotinic acetylcholine receptor complex level in lymphocytes is associated with apolipoprotein E4-driven Alzheimers disease pathogenesis[J]. Alzheimers Res Ther, 2017,9(1):54.
[80]COLLINS L M, WILLIAMS-GRAY C H. The genetic basis of cognitive impairment and dementia in Parkinsons disease[J]. Frontiers in Psychiatry, 2016,7:89.
[81]MA Q L, TENG E, ZUO X H, et al. Neuronal pentraxin 1: a synaptic-derived plasma biomarker in Alzheimers disease[J]. Neurobiology of Disease, 2018,114:120-128.
[82]BAI F, XIE C M, YUAN Y G, et al. Promoter haplotypes of interleukin-10 gene linked to cortex plasticity in subjects with risk of Alzheimers disease[J]. Neuroimage Clin, 2018,17:587-595.
[83]STEELE N Z R, CARR J S, BONHAM L W, et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case-control study[J]. PLoS Med, 2017,14(3):e1002272.
[84]LACOUR A, ESPINOSA A, LOUWERSHEIMER E, et al. Genome-wide significant risk factors for Alzheimers disease: role in progression to dementia due to Alzheimers disease among subjects with mild cognitive impairment[J]. Mol Psy-
chiatry, 2017,22(1):153-160.
[85]中國痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(七):阿尔茨海默病的危险因素及其干预[J]. 中华医学杂志, 2018,98(19):1461-1466.
(本文编辑 马伟平)
[收稿日期]2020-01-07; [修订日期]2020-05-09
[基金项目]山东省自然科学基金面上项目(ZR2012HM049)
[第一作者]张丽娜(1993-),女,硕士研究生。
[通信作者]郭宗君(1964-),男,博士,主任医师,硕士生导师。E-mail:guozjj@163.com。