气相色谱法的应用
2020-07-01张晨晖
张晨晖
摘 要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。
关键词:气相色谱法;发展历程;工作原理;水污染物分析
1 气相色谱法的起源与发展历程
1.1 气相色谱法的起源
色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国植物学家M.Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,M.Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。M.Tswett开创的方法叫做“液--固色谱法”,这就是色谱法的起源。1941年,英国科学家Martin和Synge在研究液--液分配色谱时,预言可以使用气体作流动相,即气--夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气液分配色谱的起源。
1.2 气相色谱法的发展
在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家JaroslavJanak发明的。该仪器以CO2为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CO2进入测氮管之前,通过KOH溶液吸收掉CO2,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。
现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。
气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的快速发展。
2 气相色谱法的原理与特点
色谱法又叫层析法,它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱分离技术或色谱法。当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。
色谱法具有:分离效能高、分析速度快、样品用量少、灵敏度高、适用范围广等许多化学分析法无可与之比拟的优点。
气相色谱法的一般流程主要包括三部分:载气系统、进样系统、分离系统、温控系统和检测系统。当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分配,最后达到平衡。这种物质在两相之间发生的溶解和挥发的过程,称分配过程。分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。
由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。GC-6890N气相色谱分析仪充分利用这一原理,能够快速、高效、准确地分析出饮用水中消毒副产物的组分及其含量,根据这些气体的组分类型及其含量,我们就可以准确地控制引用水中的各项指标。
3 气相色谱法的在水污染物分析中的应用
水中有机污染物的分析检测主要靠GC来解决,所以有大量的研究论文,讨论各种水中挥发和半挥发性有机物,如苯系物、卤代烃、残留农药以及各种化学品。在分析这些有害物质时,普遍使用了像顶空进样、吹扫捕集、固相萃取、固相微萃取、管内固相微萃取以及顶空和固相微萃取结合的样品处理新技术,也大量使用了GC/MS进行分离及鉴定的有效手段。
毛细管顶空气相色谱法测定饮用水中的氯仿和四氯化碳。气相色谱分析法在环境水和废水分析中有著广泛的应用,特别是对水中复杂、痕量、多组分有机物分析,GC是强有力的成分分析工具,而MS是能给出最充分信息的结构分析器。二者的结合常常成为首选的分析方法。据报道少数发达国家已将GC/MS系统列为水中有机物的监测分析方法和标准分析方法,成为有力的鉴定工具。
4 气相色谱法在石油工业中的应用
4.1 石油气的分析
石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25mL/min,热导池电桥电流120~150mA,C1~C4各組分得较好的分离。吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。
4.2 石油馏的分析
气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6μL,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离。
5 气相色谱法在环境科学中的应用
我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。
在大气中微量一氧化碳的分析。汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O色谱柱固定相可用5A筛分子,GDX-104,PorpakQ等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2h)以氢气载气,57mL/
min;氢焰检测器;空气400mL/min;尾吹氮气80mL/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mL。可测大气中ppm级一氧化碳。
参考文献:
[1]崔曙光,李晋雄,王成.超声雾化(干雾)除尘系统在古城矿选煤厂的应用[J].煤炭加工与综合利用,2019(12):68-71+75.
[2]姚君尉.气相色谱法基本原理及其应用[J].中国化工贸易, 2020,12(2):124+126.
[3]柳清源.环境保护和环境监测中的气相色谱法运用分析[J].环境与发展,2020,32(2):167+169.