复杂地表浅层速度建模技术研究及应用
2020-06-23戴海涛成剑冰王红博刘怀山刘志兵
戴海涛,成剑冰,王红博,刘怀山,刘志兵
(1.中国海洋大学海洋地球科学学院,山东青岛266100;2.中国石油东方地球物理公司研究院,河北涿州072750)
1 真地表叠前深度偏移技术存在的问题
1.1 近地表圆滑偏移面分析
中国西部地区地表起伏剧烈,低降速带巨厚,高速地层和低速覆盖层分布无规律,地震波射线的入射角和出射角变化范围大,静校正会造成地震波射线在走时计算时出现误差,进而造成波场失真[1-2]。
常规时间域叠前道集的静校正处理是将静校正和剩余静校正的总量在CMP道集域进行高频、低频分离,分离出的低频分量是以CMP为单元统计出的时间域地形平均面,即CMP参考面。早期的叠前深度偏移处理通常通过替换速度将时间域的CMP参考面换算到深度域,作为深度偏移基准面。复杂山地地表高程变化大,造成基于真实地表与CMP参考面计算得到的深度偏移基准面差异大,因而射线路径的走时误差大,波场畸变严重。为了解决波场畸变问题,目前深度偏移成像时通常采用对地表高程进行小尺度平滑,选取地表圆滑面作为深度域偏移基准面的处理方法。地表圆滑面反映地表高程的变化形态,应尽可能减少其与地表的高差。该处理思路是为了消除地表圆滑面与CMP参考面之间的低频时差,将激发点和接收点的真实位置垂直校正到地表圆滑面上,对偏移前的道集数据应用高频静校正,以减小真实激发点、接收点与地表圆滑面之间的射线旅行时误差。
以上方法技术虽然削弱了道集时差对偏移成像的影响,但仍然存在以下问题:①虽然地震数据中引入了高频静校时差,但道集时差对地震波场走时的影响并未完全消除;②深度偏移基准面是根据时间域基准面静校正量求得的,它与后续建立的深度域近地表速度模型不一定匹配。
1.2 浅层速度建模问题分析
叠前深度偏移的核心是获得准确的速度模型。中、深层速度模型的准确程度不仅取决于道集数据信噪比,还依赖于浅表层速度模型的精度。浅层速度误差会传递至下伏地层,进而影响深层速度模型的精度,因此建立准确的浅层速度模型对深度偏移成像至关重要。利用反射波进行速度层析反演,要求反射波具有高信噪比、大排列长度、可准确拾取共反射点(common reflection point,CRP)道 集 的 剩 余 延 迟(residual moveout,RMO)。但因三维地震浅层资料存在覆盖道数少、信噪比低的缺点,使得共成像点道集浅层的反射波同相轴很难被识别,剩余延迟拾取不准确。因此用于评价偏移速度正确与否的判别准则(同相轴校平)失去其依据,利用反射波层析成像速度优化方法无法求取准确的近地表及浅层地层速度。图1 是我国西部某复杂山地的三维地震速度谱及CRP道集,可以看出中深层的反射信号具有较高信噪比以及较大排列长度,浅层地震资料信噪比低、覆盖道数少,难以识别有效反射信息,因此利用反射波层析建立准确的浅层速度模型存在困难。
图1 西部地区某复杂山地三维地震速度谱(a)及CRP道集(b)
2 真地表浅层速度建模技术
2.1 思路及策略
利用初至波层析反演出高精度的浅表层速度模型,并与偏移基准面配套应用,可建立合理的深度偏移浅层速度模型,实现真地表叠前深度偏移。本文研究并提出了面向复杂山地低信噪比的真地表浅层速度建模技术,核心技术思路包括如下内容:
1)在微测井[3]、钻测井等速度信息约束的基础上,利用回折波层析反演[4-7]方法建立近地表及浅层速度模型,以提高浅层速度模型的精度。
2)静校正直接面向深度域成像,即将时间域大炮初至数据的回折波反演得到的近地表模型直接作为深度域浅层速度模型,将时间域静校正仅作为叠前去噪等处理方法的辅助手段,因此需要在叠前深度偏移前对应用了基准面静校正量的地震数据进行静校正“反应用”,时间域静校正引起的时差问题可采用真地表偏移面+浅层建模+深度偏移的处理方法解决,根据深度偏移成像质量决定静校正方法及优选参数。
3)在表层速度准确的情况下,选取包含高精度旅行时算法的层析成像和偏移方法,完成整体速度模型的建立以实现真地表叠前深度偏移。
2.2 微测井约束回折波分层层析反演
复杂山地采集的浅层地震资料信噪比低、覆盖次数少、缺乏远炮检距波场信息,反射波层析成像无法有效求取准确的近地表速度,因此大炮初至数据的回折波层析反演技术[8-11]成为时间域静校正处理和深度偏移近地表速度建模的有效技术手段。
回折波层析反演考虑了地震波在近地表介质中传播的各种现象,对回折波或连续折射直达波通过高精度的交互反演得到近地表介质速度变化情况,从而建立复杂的近地表模型。但受采集资料的限制,当最小炮检距、低降速层厚度较小时,利用初至波信息无法准确刻画表层极低速度的信息,需要联合微测井和近炮检距初至波信息反演低速层速度,再以反演速度为约束,联合微测井和中、远炮检距初至波信息反演高精度的降速层速度,从而建立精确的近地表速度模型。
大炮初至数据的回折波层析反演技术对近地表结构进行高密度速度单元划分,将回折波的走时描述为对介质慢度函数沿射线路径的线积分,回折波射线追踪利用初始速度模型和炮检点位置计算旅行时,初至时间与正演旅行时之差可被反演成射线经过的每个速度单元慢度的扰动。
为了使反演结果与实际模型更吻合并使反演结果稳定合理,本文采用了微测井约束回折波层析反演方法。该方法的目标函数包含了速度约束项,先将微测井解释的近地表模型作为约束条件[11],再与旅行时残差共同构成目标函数,最后求解拉格朗日约束条件下的目标函数最小二乘解。在层析反演中,由M条射线和N个未知数建立的层析矩阵方程为[12-15]:
式中:A为射线路径集合的Jacobi矩阵;ΔS为慢度修正向量;ΔT为旅行时残差矩阵。可分别表示为:
假设通过微测井获得了L个准确的速度信息,即方程(1)中的N个速度单元中有L个已知量,用L维方程可表示为:
式中:C为已知的L个约束条件的Jacobi矩阵;F为约束旅行时残差矩阵。
其中,
在初至波层析中,假如[~S1,~S2,…,~SL]T为采用微测井或其它方法获得的部分已知近似速度,那么(4)式C和F的矩阵元素分别为:
1)利用微测井约束回折波分层层析反演求取高精度近地表速度模型。
2)中深层的速度模型的建立:①利用时间域均方根速度场,通过约束速度反演得到时间域层速度;②在构造模型约束条件下,通过时深转换获取深度域层速度;③利用VSP等钻、测井资料对速度场进行修正得到中、深层速度模型。
3)在近地表速度模型中选取一个平滑的高速层顶界面作为速度融合界面,在设定的时窗内将近地表速度镶嵌到中、深层速度模型中,从而获得用于深度偏移的初始速度模型,在后续速度模型迭代修正过程中,保持近地表速度模型不变,仅对高速层顶界面以下的地层进行速度迭代更新。
解决起伏地表的波场畸变问题,不仅需要高精度的近地表速度模型,还必须将偏移基准面选为真实地表面,从而实现真地表叠前深度偏移。为此需要正确处理时间域静校正与偏移基准面的关系。既然深度域浅层速度模型与时间域静校正是一致的,即已经在深度域利用近地表速度解决了时间域静校正问题,那么应用了静校正的时间域偏移前道集数据应该在深度域偏移前对应用的静校正展开“反应用”,使深度偏移前的数据无需进行基准面静校正。
图3 采用不同迭代次数得到的浅层速度模型及对应的叠前深度偏移剖面
对柴达木盆地西部某工区回折波进行层析反演迭代,得到的浅层速度模型及叠前深度偏移剖面如图3所示,本工区共进行了4轮迭代,可以看出随着迭代次数的增加,速度场细节逐渐清晰,最终得到了精确的浅层速度模型,叠前深度偏移剖面成像质量也得到了大幅改善。对该工区应用微测井等资料约束前、后的回折波层析反演结果如图4 所示,图4c和图4d中蓝线代表VSP测井速度,红线代表层析成像反演的层速度。可以看出,经微测井资料约束后,回折波层析反演的表层速度横向刻画更精细,整体速度与VSP测井速度在浅、中层一致性更好,浅、中层速度很好地反映出逆冲断层速度上冲的趋势,符合目前的地质认识,叠前深度偏移剖面上反射波同相轴连续性明显增强,断面波特征更清楚,断层下部成像质量也得到明显改善。
2.4 真地表叠前深度偏移
目前制约复杂山地真地表叠前深度偏移实际应用的因素主要包括高精度浅表层速度建模和高精度偏移算法。提高旅行时计算精度,使旅行时计算结果能够描述真实近地表地层速度横向变化特点及规律,即让深度偏移解决时间域的静校正问题,有利于深度域高精度浅层速度模型建立。在建立浅层速度模型的基础上,实现真地表叠前深度偏移还需要选取合适的层析成像和偏移方法,但无论如何,旅行时计算都是重要步骤之一,在条件允许的情况下,须尽可能采用波前构建法和频率域波动方程数值解法进行旅行时计算。建立高精度的整体速度模型后,可采用波场外推的偏移方法实现真地表叠前深度偏移。
图4 应用微测井等资料约束前、后的回折波层析反演结果
采用多方位各向异性层析成像或者更为先进的绕射层析成像方法可提高速度建模精度。通常采用由浅及深、逐步递进的建模方法,在获得高精度的浅层速度模型后,采用基于井控地质导向约束的TTI网格层析成像迭代技术完成整体速度建模。该技术是在数字化露头、地层倾角测井、三维地震构造解释模型等多信息的约束下,通过联合反演减少层析解的不确定性,并确保速度模型在符合地质及构造认识规律的条件下迭代更新[18-19]。实际资料处理结果表明,网格尺度影响走时计算精度,进而对速度模型的细节刻画造成影响,因此在层析反演过程中,可通过逐步细分层析反演的网格,提高反演结果的分辨率。
3 应用效果分析
图5和图6是西部某工区近地表圆滑面叠前深度偏移剖面和真地表叠前深度偏移剖面,该区开展过多轮次的处理攻关,以往速度建模都是在近地表圆滑面上开展的,存在断层刻画不清楚,构造细节未落实,部分地区井震深度误差大的问题。此次采用了真地表叠前深度偏移技术,首先通过微测井约束初至回转波分层层析反演建立深度0~1500 m 的速度模型,然后采用基于井控地质导向约束的多方位网格层析[20]成像及TTI网格层析成像建立并优化深度大于1500 m 的速度模型,最后利用TTI真地表逆时叠前深度偏移实现高精度偏移成像。由图5可见,真地表叠前深度偏移剖面上逆冲断层下盘盐内断背斜构造形态清晰可靠,成像效果较近地表圆滑面的叠前深度偏移成果明显改善,主要表现在以下方面:
1)真地表叠前深度偏移剖面,反射波特征突出,波组特征清晰,偏移归位准确,断点、断面位置更清楚,有利于精细构造解释。
2)真地表叠前深度偏移较好地恢复了地下界面的真实形态。
如图6所示,与以往叠前深度偏移的结果相比,真地表叠前深度偏移得到的剖面构造形态变化明显,利用本工区已经完钻的两口井资料验证可知,真地表叠前深度偏移的结果与井吻合程度高,证明真地表叠前深度偏移的结果真实可靠。
图5 西部某工区近地表圆滑面叠前深度偏移剖面(a)及真地表叠前深度偏移剖面(b)
图6 西部某工区以往叠前深度偏移剖面(a)及真地表叠前深度偏移剖面(b)
4 结论与认识
总结真地表浅层速度建模的研究及其实际应用成果得出以下结论:
1)真地表叠前深度偏移浅层建模技术在很大程度上解决了近地表圆滑偏移面与时间域静校正引起的波场畸变问题。
2)微测井约束回折波分层层析反演是一种可靠地建立高精度浅层速度模型的方法,在多种信息的约束下,只有在获得高精度浅层速度模型的基础上,才能够建立准确的中、深层模型。
3)复杂山地的真地表叠前深度偏移成像精度受多种因素的影响,只有从旅行时算法、层析成像、偏移算法等多方面深入开展理论研究与实际资料试验,提高其中每一个环节的计算精度,才能够解决山前带的复杂构造成像问题。