渤海P油田层内生成CO2调驱技术
2020-06-17郑玉飞徐景亮
郑玉飞, 李 翔, 徐景亮, 于 萌
(中海油田服务股份有限公司油田生产事业部,天津 300459)
渤海P油田位于渤海中南部海域,由多个断块组合而成,在纵横向上具有多套油水系统,属于典型的疏松砂岩稠油油藏,以陆相河流相、三角洲相沉积为主,平面及纵向非均质性强。该油田采用大段防砂、强注强采的开发模式,水驱开发效率低,目前油田综合含水率已达83.1%,但采出程度仅15.1%;另外,由于注入水水质差、注水强度高,致使注水井无机堵塞严重,注水压力长期居高不下,难以满足配注要求[1]。
为解决该问题,经广泛调研发现,层内生成CO2调驱技术无需天然气源、注入工艺简单,能够很好地克服常规CO2驱的局限性,得到国内外学者的广泛关注,并开展了相关研究和矿场试验[2-6]。1999 年,Kh. Kh. Gumersky 等人[7]最先发现碳酸(氢)盐在地层条件下能够与酸发生反应生成大量的CO2,并于2000-2004年在Novo-Pokursky油田开展了矿场驱油试验,3个月累计增油量超过2 700 t;2010 年,B. J. B. Shiau 等人[8]系统研究了可在储层自发生成CO2的氨基甲酸铵和氨基甲酸甲酯等化学药剂及其调驱机理。国内也相继开展了层内生成CO2调驱技术研究和先导性试验,邓建华等人[9]依据层内生成CO2的机理研制了KD-79单液生CO2体系和KD-79双液生CO2体系,驱替试验表明,这2种体系都可以起到调剖、驱油的作用;赵仁保等人[10]利用填砂管进行了层内自生CO2的试验研究,结果表明向生CO2体系中添加起泡剂可有效控制CO2气体在高渗管中的窜流;2008年3月开始,河南油田魏岗和江河井区的9口井实施了层内生CO2深部解堵增注措施,措施后平均注入压力为3.64 MPa,累计增注量 61 179 m3,有效期长达 322 d[11];2016年,李文轩等人[12]通过室内试验筛选出以盐酸和小苏打为主剂的层内自生CO2解堵体系,矿场试验表明,该体系具有优良的的暂堵分流能力和增油效果。
笔者针对渤海P油田的储层特征及开发特点,提出采用集调剖、驱油、增注于一体的层内生成CO2调驱技术,然后通过室内试验优选了适用于渤海P油田的生CO2体系及配套的泡沫体系,并将其规模化应用于现场,取得了良好的调整注水井吸水剖面、降压增注和稳油控水效果,为渤海P油田的高效开发提供了技术手段。
1 层内生成 CO2 调驱基本原理
层内生成CO2调驱技术通过向目的层分段塞交替注入生气剂和释气剂,2种药剂在油层内发生化学反应放热并释放出CO2气体,与注入的发泡体系共同作用于油层。该技术在保留常规CO2驱优点的同时克服了其缺点,能够同时实现近井调剖、解堵和远井驱油的功能,其具体作用原理如下:
1)解堵作用。生气剂和释气剂反应放热可解除有机堵塞,起降压增注作用。
2)调剖作用。生成的CO2与发泡体系作用形成CO2泡沫,并与添加的稳定剂配合,可以封堵高渗层,改善水驱效果。
3)驱油作用。CO2溶于原油,使原油体积膨胀,原油黏度和油水界面张力降低。
4)降黏作用。生气剂与释气剂发生化学反应放出的热量可以降低原油的黏度。
2 层内生成 CO2 调驱关键技术
针对渤海P油田储层非均质性严重和近井地带污染等问题,根据调剖、解堵和驱油一体化的思路,进行层内生气调剖关键技术研究,主要进行了生气体系优选、泡沫体系筛选和稳定剂优选。
2.1 生气体系优选
利用化学反应釜考察了生气剂和释气剂对生气量和生气速率的影响,以获得最优生气体系。层内生气试验装置如图1所示。
图 1 层内生气试验装置Fig.1 Experimental device of in-situ CO2
分别选用相同浓度的生气剂A,B和C与释气剂D,E和F,预先将生气剂A,B和C溶液置于图1中的广口烧瓶中,然后用酸式滴定管加入相同浓度的释气剂D,E和F,考察其生气量和生气效率,60 ℃下的生气效果见表1。
从表1可以看出,生气剂A,B和C与释气剂D反应的生气量最大,生气效率最高,生气量在280 mL左右,生气效率均达到96.0%以上。考虑经济性和稳定性,选择生气剂A+释气剂D的生气体系。
2.2 泡沫体系筛选
2.2.1 发泡剂筛选
在100 mL模拟地层水中分别加入不同量的发泡剂,配制成发泡剂溶液,采用Waring Blender法考察其发泡体积和析液半衰期,结果如图2、图3所示。
表 1 不同生气体系的生气效果(60 ℃)Table 1 Statistics of system components and gas generation effects (60℃)
图 2 不同发泡剂在不同加量下的发泡体积Fig.2 Changes of foaming volume with the concentration of different foaming agents
图 3 不同发泡剂在不同加量下的析液半衰期Fig.3 Changes of half-life time with the concentration of different foaming agents
从图2和图3可以看出,发泡剂加量较小时,不同发泡剂的发泡体积和析液半衰期均随着加量增加而增加;但发泡剂加量过大时,其发泡体积和析液半衰期反而略有下降。这是因为发泡剂加量增加到一定程度时,其分子在气液表面排列的无序度增加,致密度降低,造成泡沫液膜强度减弱,稳定性随之降低。从图2和图3还可以看出:发泡剂2~5不仅发泡体积大,且泡沫的稳定性好,因此选取发泡剂2~5进行复配,进行下一步筛选。2.2.2 发泡剂复配筛选
发泡剂加量控制在0.3%,将发泡剂2~5分别以2∶1和1∶2的比例进行复配,考察复配后的发泡性能,结果如图4所示(图4中,发泡体系1为发泡剂2和发泡剂3按2∶1复配;发泡体系2为发泡剂2和发泡剂3按1∶2复配;发泡体系3为发泡剂2和起泡剂4按2∶1复配;发泡体系4为发泡剂2和发泡剂4按1∶2复配;发泡体系5为发泡剂2和发泡剂5按2∶1复配;发泡体系6为发泡剂2和发泡剂5按1∶2复配;发泡体系7为发泡剂3和发泡剂4按2∶1复配;发泡体系8为发泡剂3和发泡剂4按1∶2复配;发泡体系9为发泡剂3和发泡剂5按2∶1复配;发泡体系10为发泡剂3和发泡剂5按1∶2复配;发泡体系11为发泡剂4和发泡剂5按2∶1复配;发泡体系12为发泡剂4和发泡剂5按1∶2复配)。从图4可以看出,发泡体系5(发泡剂2和发泡剂5以2∶1的比例复配)的发泡体积为740 mL,析液半衰期达219 s,表现出优良的协同效应。因此,选0.2%发泡剂2+0.1%发泡剂5作为发泡体系。
2.3 稳定剂的筛选
为保证泡沫在渗流过程中能封堵优势渗流通道,需要加入稳定剂。利用渗透率 2 000~10 000 mD的填砂模型进行流动试验,考察泡沫加入不同稳定剂后对不同渗透率渗流通道的封堵能力,结果如图5所示。从图5可以看出,泡沫加入稳定剂1对高渗渗流通道的封堵率基本保持在90%左右,封堵性能最好;泡沫加入稳定剂2对低渗渗流通道的封堵性较好,但由于其溶解性好,易被冲刷,封堵率随渗透率升高下降很快,稳定性较差;泡沫加入稳定剂3和稳定剂4的封堵性能比加入稳定剂1差,但比加入稳定剂2强。综上所述,选用稳定剂1。
3 现场应用
渤海P油田先后进行了5批次15井组的层内生成 CO2调驱作业,累计注入调剖剂 15 423 m3,措施后累计增注量 69 986 m3,累计增油量达 33 413 m3,措施成功率100%,取得了显著的调剖、降压增注和稳油控水效果。下面以渤海P油田B1注采井组为例介绍该技术的具体应用情况。
根据渤海P油田B1注采井组的地质油藏特征,利用室内优选的生气体系和发泡体系,进行层内生成CO2方案设计,以降低该井组注水井的注入压力,增加注水量的同时提高驱油效率,提高油井产油量。具体步骤为:
1)根据注水井和生产井的井距、注水层有效厚度、油层孔隙度等油藏资料,利用层内生成CO2数学模型,计算出措施井注入药剂的量。
2)根据井组的具体情况确定药剂的段塞组合,以确保药剂在地层中能充分混合反应。B1注采井组注水井B1井的注入段塞组合如表2所示。
3)按照设计在钻井液池中配制药剂溶液,分别使用钻井泵和酸化泵以油管正注的方式将生气剂、释气剂和稳定剂笼统注入目的层位,作业方式为不动管柱作业,施工周期短,作业成本低。
4)注入过程中根据现场地层吸水测试结果不断优化药剂注入排量。前期控制注入速度,使药剂优先进入高渗层进行封堵;后期适当提高注入速度,启动低渗层。
表3为B1注采井组注水井B1井应用层内生成CO2调驱技术前后吸水剖面测试结果。由表3可知,应用层内生成CO2调驱技术后,强吸水层的吸水能力降低,弱吸水层的吸水能力增强,如吸水能力较弱的第4小层的吸水量占比大幅提高(从5%增至73%),而主力吸水层第3小层的吸水量占比显著减小(从69%降至13%),表明层内生成CO2调驱技术取得了良好的调剖效果。
应用层内生成CO2调驱技术后,注水井B1井的视吸水指数提高了24.6%,累计增注量达20 721 m3。与注水井B1井对应的8口受效生产井累计净增油量 2 430 m3,考虑递减后的增油量 4 724 m3,平均有效期长达5个月。
图 4 不同发泡体系的发泡体积和半衰期Fig.4 Foam volume and half-life of different foaming systems
图 5 泡沫加入不同稳定剂后的封堵性能Fig. 5 Comparison of plugging performance of plugging systems with different stabilizers
表 2 B1井层内生成CO2注入段塞组合Table 2 Slug formation form in-situ CO2 generation in Well B1
表 3 层内生成CO2调驱技术应用前后注水井B1井吸水剖面测试结果Table 3 Comparison of water absorption profile in Well B1 before and after measurement of in-situ CO2 generation
4 结 论
1)针对渤海P油田注水开发存在的问题,采用了集调剖、驱油和增注于一体的层内生成CO2调驱技术,通过室内试验优选出了层内生成CO2体系配方:生气剂A+释气剂D构成生气体系,0.2%起泡剂2+0.1%发泡剂5+稳定剂1构成发泡体系。
2)现场应用表明,层内生成CO2调驱技术可以解决渤海P油田注水开发存在的问题,建议在该油田推广应用。