APP下载

添加玉米秸秆重金属污染对水稻土有机碳矿化的影响①

2020-06-15赵熙君张旭辉徐子银张玉娇郑聚锋刘晓雨李恋卿潘根兴

土壤 2020年2期
关键词:土壤有机矿化重金属

应 多,赵熙君,张旭辉,徐子银,闫 华,张玉娇,郑聚锋,刘晓雨,李恋卿,潘根兴

(南京农业大学农业资源与生态环境研究所,南京 210095)

由于大气CO2等温室气体浓度增加而导致的全球变暖效应受到越来越多的关注[1]。土壤是陆地系统最大的碳储库[2],其对固碳减排和缓解温室效应具有重要意义[3-5]。水稻土是我国重要的农田土壤类型,其有机碳含量一般较高,在我国粮食安全、农田土壤碳库保持及农业的可持续发展中占有重要地位[6-8]。

近20 年来,随着我国工业化的快速发展,我国南方水稻土重金属污染状况日益加剧[9-11]。重金属污染可对土壤酶活性、土壤微生物生物量及微生物群落结构等产生不同的影响,从而改变土壤有机碳的矿化和周转等过程[12]。不同程度的重金属污染对土壤有机碳的转化过程影响不同,如低浓度的重金属可刺激土壤呼吸和土壤碳代谢作用,增加土壤的矿化速率,而高浓度的重金属则会抑制微生物的分解活动从而导致土壤有机碳矿化速率降低[13]。这可能是因为不同污染程度下分解有机碳的微生物群落响应不同,如在重度污染条件下,真菌的响应比细菌更为敏感,随着污染程度的增加,抗逆真菌的数量会显著增加而敏感真菌的数量会急剧减少[12]。

新鲜有机碳加入到土壤中会在短时间内刺激土壤微生物的生命活动,从而改变土壤中原有有机碳的分解速率,这种激发效应会影响土壤有机碳的分解及转化过程[14],而这种影响又与土壤养分含量和活性有机碳库组分密切相关[15-16]。土壤活性有机碳库是土壤碳库中周转较快的活跃组分,影响着土壤生态系统中有机碳的迁移、固持和转化[17-19]。在农田土壤中,作物通过每季的根系分泌物或残茬输入保持着土壤有机碳的更新,这种新碳的输入也一直在持续影响土壤中原有有机碳的分解转化,但这种影响在不同程度重金属污染胁迫下如何表现目前研究较少,而明晰这种表现则成为探讨环境污染胁迫下农田土壤有机碳转化行为的关键,这对于进一步了解环境变化下水稻土的固碳减排效应具有重要意义。

稳定性碳同位素示踪技术一直是研究土壤有机碳循环和周转的重要手段[20-21]。利用C3 和C4 作物δ13C 值的不同可研究土壤中有机碳矿化所释放CO2的来源。本研究将玉米(C4 作物)秸秆添加到长期种植水稻(C3 作物)并受不同程度重金属污染(距离污染源下风向不同距离)的水稻土样品中,探究不同重金属污染程度对土壤中新老有机碳矿化的影响,并通过分析培养过程中活性有机碳库组分及激发效应强度的变化,为重金属污染环境下农田土壤有机碳的稳定性研究提供参考。

1 材料与方法

1.1 供试土壤

供试土壤采自江苏省宜兴市宜丰桥(31°24′ N,119°41′ E)地形和农业管理措施相同的非污染和污染两个稻田,土壤类型为太湖地区第四纪湖积物发育的典型脱潜型水稻土——乌泥土。当地年均气温15.7 ℃,年均降水量1 177 mm。2017 年水稻收获后,在污染源的下风向分别选取距污染源60 m(P1)和10 m(P2)的土样代表不同污染程度的土壤样品,并选取邻近农作相同的未靠近污染源的田块作为对照土壤(P0)。用土钻取样法分别在距污染源相同距离的土壤中取3个重复,每个重复分别随机采取3 个样品,野外混匀,采用四分法获得混合样,取样深度为0 ~ 15 cm。各样品用塑料自封袋装好带回实验室,剔除植物根系等残体后自然风干备用。供试土壤的基本性质见表1。

表1 供试土壤样品的基本性质Table 1 Basic characteristics of tested soils

1.2 土壤有机碳矿化培养试验

将不同程度重金属污染土样风干过2 mm 筛,称重100.00 g 于500 ml 广口培养瓶中,设置两种处理:①添加玉米秸秆处理组(C1):土壤中加入过20 目筛的1 g 玉米秸秆,并充分混匀;②对照组(C0):土壤中不加玉米秸秆。之后向培养瓶中准确加入一定量去离子水,同时以不加土壤的培养瓶作为空白对照,调节土壤含水量为田间持水量的60%,25℃条件下进行7 ~ 10 d 预培养。供试玉米秸秆的有机碳含量为423.62 g/kg,全氮含量为5.60 g/kg。培养瓶可密封,在瓶盖处插入两根直径分别为16 cm 和7 cm 的橡胶小管(长管用于气体采样,短管用于换气),橡胶管上方套有一个三通阀作为气体样采集口。将培养瓶放入恒温箱中,于黑暗条件下培养60 d。土壤有机碳矿化产生的气体样品采集按事前预定的时间表进行,分别在培养的第 1、2、3、4、5、6、7、9、12、15、19、23、30、45 和60 天采集气体样品,采用 Agilem 公司 GC.4890D 气相色谱仪测定。每次抽完气样后,打开三通阀,充入标准空气 5 min 以排除瓶内原有气体,并将培养瓶重新放入培养箱继续进行耗氧培养。培养过程中用称量法调节土壤含水量。

1.3 测定项目及方法

土壤重金属全量采用王水–高氯酸消化[22],有效态含量采用CaCl2溶液浸提,其中Cu 和Zn 采用火焰原子吸收分光光度法测定,Cd、Pb 采用石墨炉原子吸收分光光度法测。测定过程中所用试剂均为优级纯,标准样品测定结果在允许误差范围之内。

采用内梅罗污染指数[23]评价土壤重金属污染水平。内梅罗污染指数的计算参照GB15618—2008《土壤环境质量标准》[24]。内梅罗污染指数的计算公式为

式中:Pi均和Pi最大分别是平均单项污染指数和最大单项污染指数。

将培养30 d 后土壤进行破坏性取样,测定其土壤有机碳含量和活性碳库组分的变化。土壤有机碳采用重铬酸钾氧化法测定[25];微生物生物量碳(MBC)采用氯仿熏蒸–K2SO4浸提[26],德国耶拿公司的N/C1000 TOC 分析仪测定;可溶性有机碳(DOC)采用0.5 mol/L K2SO4提取,TOC/TN 自动分析仪测定[27-28];颗粒态有机碳(POC)采用5 g/L 六偏磷酸钠提取法分散土壤样品,计算其占整个土壤样品的百分比并测定烘干样品中的有机碳含量,将烘干样品中的土壤有机碳含量换算成整个土壤样品对应的颗粒有机碳组分含量[29-30];易氧化有机碳(EOC)采用 0.333 mol/L KMnO4氧化法测定[31]。

抽取的气体样品保存一份于同位素样品瓶中用于CO2中的δ13C 值的测定,13C/12C 比值用质谱仪测定(MAT-253/SC-040075),分析方法遵循质谱方法准则[32]。

温室气体产生速率的计算公式[33]为

式中:F为气体(CO2、CH4和N2O)产生速率,单位为μg/(kg·d);ρ为标准状况下的气体的密度,CO2密度为1.98 kg/m3;V为培养瓶内气体体积(L);W为土样质量(g);ΔC/Δt为在一定时间内气体浓度的变化速率;T为培养温度(℃);α为气体换算到碳或氮的转化因子,CO2为 12/44。

添加秸秆后相对激发效应PE(%)的计算:

式中:RES为加入的玉米秸秆矿化量占总有机碳的比例;δs为加入玉米秸秆土壤释放 CO2的δ13C(‰);δC3为对照土壤的δ13C (‰);δC4为玉米秸秆的δ13C (‰);CO2-C为土壤有机碳释放的总CO2-C;CO2- Ctreatment为添加秸秆处理土壤有机碳释放的CO2-C,CO2-Ccontrol为未添加玉米秸秆对照处理土壤有机碳释放的CO2-C 量[34]。

1.4 数据处理

试验所得数据采用 Microsoft Excel 2013 处理,采用SPSS 18.0 软件对处理间的差异进行方差分析及多重比较,差异显著性水平为P<0.05。

2 结果与分析

2.1 供试水稻土重金属含量及内梅罗污染指数

不同程度污染土壤样品中的重金属含量水平如表2 所示,土壤中全Cd 含量在无污染源土壤(P0)中最低,平均为2.26 mg/kg;在距离污染源 60 m 土壤(P1)中含量略高,平均为4.19 mg/kg;在污染源附近土壤(P2)中含量最高,平均为36.68 mg/kg。全Pb 含量在不同土壤中也存在显著差异,在P0 土壤中平均为37.17 mg/kg,在P1 和P2 土壤中平均含量为232.01 ~251.67 mg/kg。全Cu 含量在不同土壤中也存在着显著性差异,在P0 土壤中平均含量为51.36 mg/kg,在P1 土壤中平均含量为69.1 mg/kg,在P2 土壤中平均含量为121.42 mg/kg。土壤全Zn 含量在P0 和P1 土壤中无显著差异,其含量介于113.33 ~ 133.33 mg/kg,而在P2 土壤中平均含量为328.5 mg/kg。内梅罗污染指数计算结果表明,P0 土壤的内梅罗污染指数最低,而距污染源越近的土壤,内梅罗污染指数越高。P0土壤内梅罗污染指数为1.78,属于轻度污染,记为轻度污染;P1 土壤内梅罗污染指数为3.38,属重度污染,记为较高程度污染;而P2 土壤内梅罗污染指数最大值高于20,根据GB15618—2008《土壤环境质量标准》,其污染等级已超过第五级,属于重度污染,记为高度污染,且主要污染因子为Cd 和Pb。

表2 供试水稻土重金属含量及内梅罗污染指数Table 2 Concentrations of heavy metals and Nemero indexes in different soils tested

2.2 添加玉米秸秆不同重金属污染对水稻土有机碳矿化和累计矿化量的影响

添加玉米秸秆后不同重金属污染的水稻土培养过程CO2-C 释放速率的动态变化如图1A 所示。土壤的CO2-C 释放速率均随培养的进行而呈现下降趋势,且出现了较为明显的阶段性。第一阶段为0 ~ 7 d,即在培养前期水稻土CO2-C 释放速率迅速下降,在此阶段,添加秸秆(C1)和不添加秸秆(C0)处理P0、P1、P2 土壤累计释放量分别占其 CO2-C 总释放量的30.3%、34.3%、30.2% 和51.4%、30.0%、38.6;第二阶段为8 ~ 20 d,CO2-C 释放速率下降幅度较为缓慢,累计释放量分别占其CO2-C 总释放量的36.3%、29.3%、34.0% 和21.4%、29.6%、26.9%;第三阶段为20 ~ 60 d,CO2-C 产生速率趋近于平稳,在这一阶段CO2-C 累积释放量分别占其总释放量的33.3%、37.6%、35.6% 和27.4%、40.3%、34.2%。

不同程度重金属污染的水稻土有机碳累计矿化量显示(图1B),添加玉米秸秆与对照组处理中P0 土壤的累计矿化量一直显著性高于P1 和P2 土壤。培养结束后,添加玉米秸秆和对照组处理中P0、P1 和P2 土壤的累计矿化量分别为2 281 mg/kg 和1 158 mg/kg、1 243 mg/kg 和287 mg/kg、971 mg/kg 和244 mg/kg。与P1和P2 土壤相比,P0 土壤在添加玉米秸秆与对照组处理中累计矿化量分别显著性增加了273% 和83%、300%和134%。添加玉米秸秆条件下P0、P1 和P2 土壤累计矿化量分别比对照处理提高了120%、540% 和360%。

图1 添加玉米条件下不同程度重金属污染的水稻土CO2-C 释放速率(A)与有机碳累计矿化量(B)Fig. 1 Emission rates of CO2-C and cumulalive mineralization of organin carbon of paddy soils under different pollution with corn straw addition during incubation

2.3 添加玉米秸秆不同重金属污染对水稻土有机碳组分的影响

在不同程度重金属污染下,添加玉米秸秆均能够不同程度增加土壤有机碳含量,且在P1 土壤中达到显著性差异,比原土和对照组分别提升了17.30% 和20.60%(图2)。玉米秸秆的添加对不同程度重金属水稻土有机碳含量的影响不同,且玉米秸秆的添加更利于较高程度重金属污染水稻土中有机碳的积累。

图2 添加玉米秸秆30 d 后对不同程度重金属污染水稻土有机碳含量变化的影响Fig. 2 Effects of corn straw addition on organic carbon contents in paddy soils under different pollution after 30d incubation

添加玉米秸秆对长期不同程度重金属污染土壤的DOC、MBC、POC 和EOC 含量都有不同的影响。由图3A 可以看出,添加玉米秸秆在不同程度重金属污染的原土中DOC 含量均显著高于对照组和玉米秸秆处理。与原土相比,对照组中P0、P1 和P2 土壤的DOC 含量分别减少了25.25%、48.27% 和37.50%;而添加玉米秸秆后DOC 含量分别降低了8.60%、50.85% 和43.82%。玉米秸秆处理与对照相比显著地提高了P0 土壤的DOC 含量,提高幅度为22.27%;而P1 和P2 土壤的DOC 含量无显著变化。

不同处理组中3 种不同程度重金属污染的水稻土MBC 含量之间均呈现显著性差异(图3B)。P0、P1和P2 土壤中玉米秸秆处理后MBC 含量均显著高于原土和对照组,添加玉米秸秆能够增加不同程度重金属污染的土壤 MBC 碳含量,比原土分别增加了45.11%、118.46% 和14.24%,与对照组相比,提升幅度分别为20.87%、80.80%、90.72%。

添加玉米秸秆条件下,3 种不同程度重金属污染的水稻土EOC 含量之间均呈现显著性差异(图3C)。在 P0、P1 和P2 土壤中原土中的EOC 含量均显著高于玉米秸秆处理和对照组;与原土相比,对照组中的EOC 含量分别降低了19.53%、23.24% 和30.56%;而添加玉米秸秆处理比原土分别降低了 8.94%、11.11% 和22.13%。与对照组相比,添加玉米秸秆能够显著增加土壤EOC 含量,在P0、P1 和P2 土壤中提升幅度分别为18.30%、12.41% 和9.89%。

对照组和添加玉米秸秆处理组中,3 种不同程度重金属污染水稻土中POC 含量之间差异不同,原土中POC 含量之间呈现显著性差异,P1 土壤中的POC含量显著高于P0 和P2 土壤(图3D)。P0 和P1 土壤中不同处理水稻土POC 之间呈现显著性差异,P2 土壤中无显著性差异。添加玉米秸秆处理后,P0 土壤中的POC 含量比原土和对照分别升高了40.51% 和13.38%;在P1土壤中,添加玉米秸秆和对照处理的POC含量与原土相比,分别降低了62.28% 和44.46%。

图3 添加玉米秸秆30 d 后对不同程度重金属污染水稻土活性碳库组分的影响Fig. 3 Effects of corn straw addition on labile organic carbon fractions in paddy soils under different pollution after 30d incubation

2.4 添加玉米秸秆不同重金属污染对水稻土新老碳矿化和激发效应的影响

本研究利用培养过程中释放的CO2中13C丰度值来区分和量化碳源,即自玉米秸秆(新碳)和土壤有机碳(老碳)。不同程度重金属污染对水稻土中新老碳的矿化有显著性差异,低污染水稻土新碳的矿化速率显著高于高污染水稻土(图4A)。在培养初期(0 ~ 7 d),P0、P1 和P2 土壤中新碳(玉米秸秆)的矿化速率逐渐升高,第7 天时比第2 天时分别增加了118.7%、23.4%和80.2%。在培养第2 天时,P0、P1 和P2 土壤中新老碳矿化比值分别为0.41、1.29、0.58;至第7 天时,新老碳矿化比值分别为2.53、4.16、1.89。在培养的中后期(7 ~ 30 d),P0、P1 和P2 土壤中新碳的矿化速率逐渐下降,第30 天时比第7 天时下降了52.1%、59.0% 和79.1%。至培养第30 天时,P0、P1 和P2土壤中新老碳矿化比值分别为1.15、1.50、0.74。添加玉米秸秆对不同程度重金属污染的水稻土原有有机碳均有正激发效应(图4B),在不同时期重金属污染的水稻土激发效应具有显著性差异,高重金属污染水稻土相对激发效应均显著高于低重金属污染水稻土。在培养初期,不同程度重金属污染的水稻土激发效应均呈现升高趋势,培养前期为较低,P0、P1 和P2 土壤正激发效应值分别为0.30%、12.38%、11.98%,到培养第30 天时,正激发效应值升高,分别达到了47.3%、189.7%、148.2%。

3 讨论

重金属污染通过改变土壤微生物群落结构从而改变对有机碳的矿化分解。研究表明,长期高浓度重金属污染会降低土壤中MBC 含量,而低浓度重金属污染可能会促进MBC 含量的增加[35]。本研究结果显示,在长期Pb/Cd 重金属污染的水稻土中,高度污染(P2)会降低有机碳的矿化速率,轻度污染的土壤(P0)有机碳矿化速率显著高于高度污染条件,这主要由于高度污染会对微生物活性产生抑制或毒害作用,从而降低了微生物对有机碳的矿化速率。长期重金属污染不仅降低了土壤微生物生物量,还可能通过影响土壤微生物群落结构及多样性,从而影响土壤有机碳的矿化。不同程度重金属污染可能会对土壤有机碳周转产生不同的影响[36],这可能是不同程度重金属污染对减少微生物对单一碳底物的利用能力不同,从而改变了微生物对土壤有机碳的可利用性,并通过影响细胞的代谢及功能从而对微生物的生长产生胁迫,降低微生物群落的多样性[37]。

外源有机碳的加入对农田土壤有机碳的稳定性可能会产生影响,如不同秸秆还田处理下土壤有机碳的稳定性存在着差异[38]。同时,在一定范围内随外源有机碳施用量增加,土壤有机碳转化速率及土壤有机碳含量均呈增加的趋势[39]。添加外源有机碳也有利于提高土壤酶活性及微生物养分利用率[40-41]。而在土壤受重金属长期胁迫条件下,土壤微生物生物量及其对基质的利用能力则会受到显著影响[42],如在重金属污染的土壤中添加生物质炭可显著提高土壤有机碳含量及有机碳矿化速率[43]。本研究中添加玉米秸秆能提高不同程度重金属污染的水稻土MBC、POC 和EOC 含量,而在高度重金属污染的水稻土中添加玉米秸秆则降低了DOC 含量。

田间条件下,土壤有机质一直都保持着新老碳的更新。外源有机碳的添加会促进土壤微生物的生长和土壤胞外酶的增加,从而促进土壤原有有机碳的分解,产生正激发效应[44]。在本试验中添加玉米秸秆后,不同程度重金属污染水稻土有机碳的矿化均表现为正激发效应,且随着培养的进行,激发效应也逐渐增大。在整个培养过程中,高浓度重金属污染水稻土的相对激发效应要显著高于低浓度重金属污染水稻土,显然,与低浓度重金属污染相比,高浓度重金属污染更能促进对老碳的矿化。这一方面可能是由于高浓度重金属污染的水稻土更易发生缺素现象,微生物活动也更易受到抑制,而新碳的添加刺激了微生物对养分的需求,从而加速土壤原有有机碳的分解,而营养元素相对缺乏的土壤受激发效应的影响更大[45-46]。另一方面,产生激发效应的重要机制是通过增加土壤活性碳或微生物生物量来刺激或阻滞土壤有机质的转化,而微生物则会优先分解活性有机质[14-15]。由于新碳输入土壤后,易于利用这部分碳源的微生物生物量会率先发生变化,进而会导致微生物群落的变化,而在不同重金属污染程度的水稻土中,土壤中的微生物群落本就有显著性差异,不同微生物群落对碳源利用能力的不同,新碳输入后导致不同微生物群落数量的增加或减少,从而导致对新老碳矿化强度的不同。微生物对碳源利用的选择性影响着微生物的数量、活性及其群落组成[47],但重金属污染胁迫如何影响碳源可利用性变化的响应方向及响应程度,这将是阐明重金属污染对新老碳在土壤中转化的关键。

图4 添加玉米秸杆条件下培养2、7、30 d 时土壤CO2-C 矿化来源(A)与激发效应(B)Fig.4 Partioning of CO2 evolution (A) and priming effects (B) after the addition corn straw in 2d, 7d and 30d incubation

4 结论

新鲜有机碳的添加均能促进不同程度重金属污染水稻土中原有有机碳的矿化,同时也能够提高土壤有机碳及其活性碳库组分含量,增加土壤有机碳的周转速率及土壤微生物量。低浓度重金属污染能够促进对水稻土新碳的矿化,而高浓度重金属污染条件下水稻土老碳的矿化速率则显著高于低浓度重金属污染,并降低了可溶性有机碳含量。

猜你喜欢

土壤有机矿化重金属
好氧混菌矿化能力与增强再生粗骨料性能研究
以负碳排放为目标的生物质灰矿化CO2路径研究
黑土根际土壤有机碳及结构对长期施肥的响应
氮添加对亚热带常绿阔叶林土壤有机碳及土壤呼吸的影响
沉淀/吸附法在电镀废水重金属处理中的应用
喀斯特槽谷区植被演替对土壤有机碳储量及固碳潜力的影响研究
基于复合胶凝材料的CO2矿化养护实验研究
鱼头中重金属含量真的很高?
吃蘑菇不会重金属中毒
不同浓度锌的含氟矿化液对人恒前磨牙釉质脱矿影响的体外研究