![](https://img.fx361.cc/images/2023/0225/88e6eca72ee18a42de9212b8ea99a1336d1d9400.webp)
①+②即证.
用切线法可以解决很多题目,如数学通讯问题332:
例2(数学通讯问题332)已知正数x,y,z满足xy+yz+zx≤3,求证:
![](https://img.fx361.cc/images/2023/0225/c1e1e984a18cd63040af1752b0aedfbdf7d2e47d.webp)
同理:
![](https://img.fx361.cc/images/2023/0225/8de449bae74d257f7bfc842636d3dedcec831242.webp)
![](https://img.fx361.cc/images/2023/0225/d17c5e5e6e5ef74230da78d7f0a3dea26c73f2dd.webp)
①+②+③得:
令a=xy,b=yz,c=zx,则问题转化为在a+b+c≤3的条件下,求证:
由切线法得只需证:
![](https://img.fx361.cc/images/2023/0225/77736e8fd6349a5b23244efa249ee1dd624798c5.webp)
⟺4≥(1+a)(3-a)⟺(a-1)2≥0.
![](https://img.fx361.cc/images/2023/0225/7c1ed0b6eb9f66cdad0c60f254cec35d345b65b9.webp)
![](https://img.fx361.cc/images/2023/0225/fc16255d5c13572e5e28328c68621d5ec71a24d9.webp)
④+⑤+⑥得:
故原命题得证.
二、利用割线法构造局部不等式
![](https://img.fx361.cc/images/2023/0225/c62b21e6340685b77c15fd8bd54d985a781f769b.webp)
![](https://img.fx361.cc/images/2023/0225/5e04a00bf69d1f1780740042879d44ec578ad596.webp)
![](https://img.fx361.cc/images/2023/0225/706b9de2d036126021af0f09d4831dd6568d8c3e.webp)
![](https://img.fx361.cc/images/2023/0225/9a2b8c47d5d011ec642a3db68b0ba9bc59e0b10d.webp)
上述例题用割线法可以很快解决.又如数学通讯问题399:
例4(数学通讯399问题)已知△ABC,记BC=a,CA=b,AB=c,求证:
![](https://img.fx361.cc/images/2023/0225/b3da9b8ba26c38b21ba72390c5ca48bb4fd5291e.webp)
原命题等价于:
![](https://img.fx361.cc/images/2023/0225/e02d9d27ba09ea28241933ca181079293055d2c2.webp)
![](https://img.fx361.cc/images/2023/0225/6665daea9bbeca2f9a02d16bde0f3aa47138976a.webp)
![](https://img.fx361.cc/images/2023/0225/b161610c233868b1a37b8a3841c11fe0f71d599b.webp)
下面先证明:
![](https://img.fx361.cc/images/2023/0225/5413623523f1702e74312acb73ced4bb957846ba.webp)
![](https://img.fx361.cc/images/2023/0225/c55369d62f550c34ef95b21ade4ecb6e1775f302.webp)
三式相加得:
![](https://img.fx361.cc/images/2023/0225/d9eefb6863d8c22ca361227c19fd55e11eb27b91.webp)
故原不等式得证.
三、利用均值不等式构造局部不等式
![](https://img.fx361.cc/images/2023/0225/df7a471d1f2f8fd9ebd6c23709d586ebe01b37c1.webp)
![](https://img.fx361.cc/images/2023/0225/a414352cf31ab585ec5d9ce257836d0a2fe3ea5a.webp)
![](https://img.fx361.cc/images/2023/0225/524cef7584cf92c6dcbcdb43d2ebafa2fde16a9b.webp)
故只需证明:
![](https://img.fx361.cc/images/2023/0225/786daf146386242b0364e2453a95463f07c469e8.webp)
故原不等式得证.
例6 (数学通讯398问题)已知正数a,b,c满足a+b+c≤12,求证:abc≤2a+5b+10c.
![](https://img.fx361.cc/images/2023/0225/c9f8ec91418d6dc3e9fb4c9321ad9338677abe53.webp)
当且仅当a=5,b=4,c=3时取等号.
即证.
本题证明是笔者采用文[2]中类似的构造方法写出来的,非常令人不解的是为什么这样构造局部不等式,原因如下:
先a=5,b=4,c=3时取等号,
![](https://img.fx361.cc/images/2023/0225/83bb7e1a23062d371fd6b7bde4ee41da01ff5f2e.webp)
此法还可以解决很多类似的题目.
四、利用支撑函数构造局部不等式
例7(数学通讯390问题)已知正数a,b,c,d且满足abcd=1,求证:
![](https://img.fx361.cc/images/2023/0225/db30e9d9958fb0311607abc65accd4ed7a098734.webp)
![](https://img.fx361.cc/images/2023/0225/febefe655900b4172b2bed59f2f6fdd480e18570.webp)
![](https://img.fx361.cc/images/2023/0225/f4acfee949498cfca1690fec90f8209e8fd59e97.webp)
![](https://img.fx361.cc/images/2023/0225/c6ad85bb4ea3c956cd2872f3b33b09eeacc5c144.webp)
![](https://img.fx361.cc/images/2023/0225/1112309e591fd514f6143029ee586af59e671c3a.webp)
![](https://img.fx361.cc/images/2023/0225/d9103eedcfb8dfb07e5f66d7366275372005c3e5.webp)
于是,f′(x)单调递减,而f′(1)=0
易得,当x∈(0,1)时,f′(x)>0,x∈(1,+)时,f′(x)<0.
⟹f(x)≤f(1)=0,即证①式.
![](https://img.fx361.cc/images/2023/0225/70a4c8f89249869927201975148c58cdb508ea76.webp)
四式相加,即证.
此种方法有别于切线法的“以直代曲”,这是“以曲代曲”.又如:
例8(2004年波兰奥林匹克)已知正数a,b,c且满足a2+b2+c2=1,求证:
![](https://img.fx361.cc/images/2023/0225/e6ce0891c548d2b1010e50db58683cfbb0a3b846.webp)
![](https://img.fx361.cc/images/2023/0225/c95d85aff7cee958de5eec148d9089502aa1a5ab.webp)
![](https://img.fx361.cc/images/2023/0225/581b6ccf0588e0f70daa91b12b0a7c1f1f2d8895.webp)
以下证明:
![](https://img.fx361.cc/images/2023/0225/8e43687595b1c24257ef51207b9e843267fa4534.webp)
故①式恒成立.故:
三式相加,即证.
类似地,还可以解决很多不等式竞赛题,如:2005年摩尔多瓦竞赛题等.
以上阐述了四种构造局部不等式证明试题的方法,正是”花开四朵,各自妖娆.”
当然,能用构造局部不等式去证明的题目可能远不止这四种,希望大家能继续研讨升级.