APP下载

AI作曲,由来已久

2020-05-30

计算机应用文摘 2020年22期
关键词:马尔科夫音乐风格人工神经网络

启航,音乐生产自动化的野心

早在20世纪,人类就开始探讨计算机独立制作音乐的可能性。1956年,在列哈伦·希勒(Lejaren Hiller)的研究室里,世界上第一首完全由计算机生成的音乐作品—弦乐四重奏《伊利亚克组曲》(Illiac Suite)诞生了。1995年,阿尔佩(Alpern)研发的EMI作曲系统也是较早的一个成熟的古典音乐作曲系统,该系统主要采用拼接的方式来创作再现已故作曲家音乐风格的作品,其中有类巴赫的创意曲、器乐协奏曲和组曲,还有类莫扎特的奏鸣曲以及类肖邦的夜曲。

随着AI相关技术的发展和普及,近年来,越来越多的企业和机构开始研究这个科技与艺术结合的奇妙领域,各式各样的作曲算法不断涌现,不少虚拟音乐人崭露头角。笔者梳理如下。2016年,Google研发的机器学习项目马真塔(Magenta studio)通过神经学习网络创作出一首时长90秒的钢琴曲。同年,Sony旗下的计算机科学实验室(Computer Science Laboratories,简称Sony CSL)开发了Flow Machines平台。Flow Machines利用马尔科夫链分析数据库中现存的歌曲,提取旋律及和弦的关键信息,利用这些关键信息作为变量来学习音乐风格,让不同风格的歌曲相互转换、融合,并加以优化,其代表作是一首披头士音乐风格的歌曲《爸爸的汽车》(Daddys Car)。此外,Sony CSL还开发了一个名为“DeepBach(深度巴赫)”的神经网络,利用巴赫创作的352部作品来训练DeepBach,最终完成2 503首赞美诗的创作。

第一个正式获得世界地位的AI虚拟作曲家则是2016年诞生的AIVA(Artificial Intelligence Virtual Artist)。AIVA通过读取由莫扎特、巴赫和贝多芬等名家谱写的15 000首曲子进行学习,利用深度学习技术,搭建体现它自己对音乐理解的数学模型,运用模型创作出完全原创的曲子。作为虚拟音乐人,AIVA已通过法国和卢森堡作曲家协会(SACEM)的合法注册,成为该协会首位非人类会员,并拥有自己的署名版权。

今年2月,美國数字研究机构Space150模仿知名说唱歌手Travis Scott的人声和音乐风格,做出了说唱机器人Travis Bott。这是一个关于AI创造性的实验,研发团队采用附加神经网络技术(Additional Neural Network),创造出“Travis Scott味”的旋律和打击乐伴奏,再将Travis Scott的歌词输入“文本生成器模型(Text Generator Model)”,得到了机器自动仿照Travis风格生成的歌词。于是,Travis Bott完成了自己的创作—Jack Park Canny Dope Man。最后,研发团队使用基于AI的人体图像合成技术“Deepfake”,为这首歌拍摄了MV。就乐曲效果而言,Travis Bott对Travis Scott的模仿几乎以假乱真,完全融汇了Travis Scott作品以及人物魅力最主要的外部特征。同时,该项目也进一步验证了人工神经网络技术(Artificial Neural Networks)的蓬勃发展,有助于探索未来AI在音乐中的应用价值。

造船原理,几种算法模型

现代AI作曲技术背后蕴含了多种算法模型的结合运用,包含人工神经网络、马尔科夫链及遗传算法等。如AIVA和Travis Bott就使用了一种基于人工神经网络的深度学习技术。

人工神经网络是一种对生物神经的网络行为特征进行模仿,开展分布式并行信息处理的算法数学模型。程序员必须搭建一个多层“神经网络”,在多层的结构中分别加以编程,从而处理各种输入和输出点之间的信息。作品数据输入后,人工神经网络会找到众多被输入作品之间存在的规律,继而形成对音乐旋律、节奏、音高、强弱变化的理解与学习。这种学习的主要目的是用来预测,并非就此生成作品。AI程序会带着它对以上音乐风格的预测继续运行,并将在前方遇到下一个验证数据集。这个数据集会判定它的预测是否正确,正确与错误的回馈都将被AI记住。

在不断地高速学习中,AI的预测能力就会越来越强,最终掌握程序员大数据归总后的曲风,进而编写出自己的曲子。人工神经网络为从前的算法作曲提供了一种新的方式,其优势在于能够对音乐作品的全局性特征进行学习,但是需采用大量的样本进行训练。当下国内外有许多基于该种算法所形成的AI作曲系统,如LSTM神经网络,可以确保所创作音乐的完整性。

除了人工神经网络,马尔科夫链(Markov Chain)也一直被广泛地应用于算法作曲领域。马尔科夫链是一种随机选择过程,主要用于产生一段具有一定风格的旋律。就像按照一个特定的标准人为构造制定的转换表来依次选择音符,计算并选择下一个要出现音符的可能性。这种方法可以模拟作曲家创作音乐时的思维,来控制计算机生成相应的音乐作品,但是整部作品的曲式结构无法通过马尔科夫链建模。遗传算法(Genetic Algorithm)则是模仿生物进化过程的智能计算方法,使用适应性函数来演化样本、优化全局。

其中,变异算子可以模拟人在其创作当中灵感的闪现,相当于留下最具代表性的作品来产生新的旋律。该算法的壁垒在于适应性函数的设计至今尚无统一标准。

猜你喜欢

马尔科夫音乐风格人工神经网络
浅谈陕西筝曲《云裳诉》的特色音乐风格
基于叠加马尔科夫链的边坡位移预测研究
拉赫玛尼诺夫浪漫曲音乐风格研究——以《春潮》为例
基于改进的灰色-马尔科夫模型在风机沉降中的应用
利用人工神经网络快速计算木星系磁坐标
无与伦比的月光之美——两首同词艺术歌曲《月光》的音乐风格及演唱技巧
人工神经网络实现简单字母的识别
马尔科夫链在教学评价中的应用
基于声发射和人工神经网络的混凝土损伤程度识别
基于马尔科夫法的土地格局变化趋势研究