关于几乎m-嵌入子群的注记
2020-04-29高百俊张佳缪龙
高百俊 张佳 缪龙
摘要:利用子群的几乎m-嵌入性质重新刻画了p-幂零群和UΦ-超中心。以几乎m-嵌入准素子群为研究对象,采用局部化处理方法,将几乎m-嵌入准素子群分别局部化到Sylow p-子群的正规化子中和广义Fitting子群中开展研究。得到了一个刻画p-幂零群的充分条件及3个描述UΦ-超中心结构的3个充分条件。所得结论丰富了研究p-幂零群和UΦ-超中心结构的手段。
关键词:几乎m-嵌入子群;p-幂零性;UΦ-超中心;准素子群
中图分类号:O152
DOI:10.16152/j.cnki.xdxbzr.2020-02-013
A note on nearly m-embedded subgroups of finite groups
GAO Baijun1,2, ZHANG Jia1,3, MIAO Long1
Abstract: p-nilpotent groups and UΦ-hypercentre were investigated by using nearly m-embedded property of subgroups. Nearly m-embedded primary subgroups was took as the research object and localized to the normalizer of Sylow p-subgroups and the generalized Fitting subgroup respectively by adopting localization method. A sufficient condition of p-nilpotent groups and three sufficient conditions on the construction of UΦ-hypercentre were obtained. The researching methods on the structure of p-nilpotent groups and UΦ-hypercentre were enriched by the obtained results above.
Key words: nearly m-embedded subgroup; p-nilpotency; UΦ-hypercentre; primary subgroup
本文讨论的都是有限群,涉及的术语和符号可见文献[1-2]。符号U和N表示超可解群系和幂零群系。
2009年,Shemetkov和Skiba[3]通过考虑有限群G的非Frattini主因子的G-超中心性质,定义了有限群G的FΦ-超中心,它不仅包含有限群G的F-超中心,而且是有限群G的F-超中心的自然推广。2014年,汤菊萍和缪龙[4]利用给定阶子群的M-可补性考察了有限群的FΦ-超中心构造。2016年,张佳、缪龙和汤菊萍[5]利用子群的M*-可补性对有限群的UΦ-超中心的结构进行了研究。2011年,郭文彬和Skiba[6]引入了Σ-嵌入子群、几乎m-嵌入的概念,并利用子群的几乎m-嵌入性质对有限群p-幂零性和相关群系做了一些研究。其他有关有限群的p-幂零性及群系的研究还可参考文献[7-10]。
作为以上研究工作的继续,我们将利用准素子群的几乎m-嵌入性质对有限群的p-幂零性及广义超中心的结构进行研究,并将得到一些新的刻画。
1 相关引理
参考文献:
[1]DOERK K,HAWKES T O. Finite Soluble Groups [M]. Berlin-New York: Walter de Gruyter,1992.
[2]徐明曜.有限群导引(上)Ⅱ[M]. 北京:科学出版社, 2007.
[3]SHEMETKOV L A, SKIBA A N. On the XΦ-hypercentre of finite groups[J].Journal of Algebra,2009,322(6):2106-2117.
[4]TANG J P, MIAO L. On the FΦ-hypercentre of finite groups [J]. Canadian Mathematical Bulletin,2014,57(3):648-657.
[5]ZHANG J, MIAO L, TANG J P.M*-supplemented subgroups of finite groups[J].Proceedings of the Indian Academy of Sciences-Mathematical sciences, 2016,126(2):187-197.
[6]GUO W B, SKIBA A N. Finite groups with systems of Σ-embedded subgroups[J].Science China Mathematics,2011,54(9):1909-1926.
[7]鮑宏伟,张佳.准素子群的局部化性质对群结构的影响[J].华中师范大学学报(自然科学版) ,2015,49(1):21-24.
BAO H W,ZHANG J. The influence of localized properties of primary subgroups on the structure of finite groups[J].Journal of Huazhong Normal University(Natural Sciences),2015,49(1):21-24.
[8]TANG J P, MIAO L. A note on m-embedded subgroups of finite groups[J]. Turkish Journal of Mathematics,2015,39:501-506.
[9]张荣.Sylow子群的2-极大子群与p-幂零群[J].西北大学学报(自然科学版),1996,26(3):201-204.
ZHANG R.2-Maximal subgroups of Sylow subgroups and p-Nilpotent groups[J]. Journal of Northwest Normal University(Natural Science Edition),1996,26(3):201-204.
[10]ZHANG J, MIAO L. On Mp-embedded primary subgroups of finite groups[J].Studia Scientiarum Mathematicarum Hungarica,2016,53(4):429-439.
[11]GUO W B. The Theory of Classes of Groups[M].Berlin/New York/Dordrecht/Boston/London: Science Press-Kluwer Academic Publishers,2000.
[12]HUPPERT B,BLACKBURN N. Finite Groups III[M].Berlin-New York:Springer-Verlag, 1982.
[13]SKIBA A N.On weakly s-permutable subgroups of finite groups[J].Journal of Algebra,2007,315(1):192-209.
[14]LI Y M,WANG Y M.The influence of minimal subgroups on the structure of finite groups[J].Proceedings of the American Mathematical Society,2003,131(2):337-341.
[15]MIAO L,LEMPKEN W.On M-supplemented subgroups of finite groups[J].Journal of Group Theory,2009,12(2):271-287.
(编 辑 张 欢)
收稿日期:2020-01-10
基金項目:国家自然科学基金资助项目(11871062);新疆维吾尔自治区高校科研项目(XJEDU2017M034);西华师范大学博士科研启动项目(17E091)
作者简介:高百俊,女,河南扶沟人,博士,副教授,从事群论研究。
通信作者:缪龙,男,江苏扬州人,教授,博士生导师,从事群论研究。