APP下载

重新认识滑坡作用

2020-04-29邱海军马舒悦崔一飞杨冬冬裴艳茜刘子敬

关键词:土壤侵蚀山体滑坡

邱海军 马舒悦 崔一飞 杨冬冬 裴艳茜 刘子敬

【主持人语】自然灾害作为一种破坏性灾害事件,经常对人类的生命财产和生存环境构成严重威胁,制约着人类的可持续发展,因此自然灾害综合研究的理论与方法已成为国内外学者研究的重点。该栏目重点关注灾害研究的理论与实践,包括山体滑坡作用、灾害型景區旅游解说、灾后恢复与救助力度、地质灾害防治机制以及黄土磁化率对气候事件记录及意义研究。西北大学教授邱海军在“重新认识滑坡作用”一文中论述了山体滑坡重塑地形、限制山体起伏等多方面作用,进一步深化了对山体滑坡作用的认识。西安财经大学副教授郝俊卿在“灾害型景区旅游解说对科普旅游体验的影响因素分析——以翠华山山崩国家地质公园为例”一文中采用逐步回归方法,构建了旅游解说对科普旅游体验的影响模型,探索了国家公园的建设管理,为地质公园科普实践提供了有效建议。中国科学院地理科学与资源研究所陆地表层格局与模拟院重点实验室张正涛在“灾后恢复中救助力度对恢复速度支撑的过程模拟研究”一文中对灾后恢复速度的提高与灾后救助力度关系进行了研究,通过建立间接经济损失动态评估模型,评估所需救助资金及其对恢复过程的动态影响,以期帮助各地政府科学有效地安排灾后救助预算。陕西省国土资源厅地质环境处处长王雁林在“陕西省地质灾害重大风险问题与防控机制研究”一文中指出了陕西省地质灾害防治现存的三大风险问题,进而提出构建陕西省地质灾害防治新机制,推动地质灾害防治理论研究,提高地质灾害防控管理水平和应急能力。西北大学城市与环境学院徐新文在“黄土磁化率对千年-百年尺度气候事件的记录及其古气候意义”一文中以黄土高原的赵家川和巴谢剖面为例,通过高密度磁化率数据分析千年-百年尺度的气候波动,对黄土中记录的气候快速变化事件进行更为深入的认识和理解。这些工作将为自然灾害全方面研究与发展打下基础,并提供一定的研究思路。

【主持人】邱海军,西北大学城市与环境学院教授,博士生导师。

摘要:山体滑坡是全球山区环境中最为常见和严重的自然灾害之一,每年都会造成大量的人员伤亡和财产损失。前人大量研究主要集中于滑坡灾害的动力学过程、形成机制和风险评估、监测预警等方面。然而,山体滑坡不仅仅是重要的自然灾害,更起到重塑地形,限制山体起伏,改变土壤的物理和生化性质,加速土壤侵蚀,扰乱植物演替,影响生态系统多样性,影响人类社会等多方面作用,而这些作用对于拓深自然地理、地质和生态过程的认识有着重要的意义。但遗憾的是这方面的研究目前相对薄弱,没有引起学界足够的重视。基于此,该文详细论述了山体滑坡在这方面的作用,为进一步深化对山体滑坡作用的认识提供了全新的研究思路与独特见解。

关键词:滑坡;自然灾害;地貌;土壤侵蚀;植物演替

中图分类号:P954;P931

DOI:10.16152/j.cnki.xdxbzr.2020-03-007

Reconsider the role of landslides

QIU Haijun1,2, MA ShuyueCUI Yifei3, YANG Dongdong PEI YanqianLIU Zijing1

Abstract: Landslides, which account for enormous casualty and property damage every year, are very widespread and dangerous natural hazard in mountainous and hilly environments around the world. Previous studies have focused most of their attention on kinetic process, formation mechanism, risk assessment, real-time monitoring and early warning, etc. However, landslides not only act as significant natural hazards but also reshape the topography, limit mountain relief, change the physical and biochemical properties of the soil, speed up soil erosion, disturb plant succession and influence ecosystem diversity, and affect human society, etc. This role of landslides is significantly important for deepening the knowledge on physical geography, geologic and ecologic process. Unfortunately, only few researches have been focused on the role of landslides. Thus, we  illustrated the role of landslides in detail and provided new insights into new thinking and special opinion to deepen the knowledge of the role of landslides in this paper.

Key words: landslides; natural hazard; geomorphology; soil erosion; plant succession

滑坡作为一种非常复杂的自然现象和破坏性的地质事件, 对人类的生命财产和生存环境构成严重威胁, 极大地制约着当地人类社会的可持续发展[1-3]。 现有研究主要集中于滑坡的动力学过程、 形成机制、 风险评估和监测预防等方面[4-8], 却完全忽视了滑坡在其他方面的重要作用[9], 例如重塑地貌,限制山体起伏, 改变土壤物理和生化性质, 加速土壤侵蚀, 扰乱植物演替和影响生态系统多样性等。 因此, 为了更好地理解滑坡相关作用, 并在未来进行进一步量化研究, 有必要对滑坡这方面的作用进行全面论述与详细梳理, 以期抛砖引玉, 让更多的学者加入到滑坡作用的研究中来。

1 对地形的影响

1.1 重塑地貌

山体滑坡作为地貌驱动力,是重要的地貌过程,且在自然环境的山脉演化中发挥着重要作用[10-13]。许多现有地貌都曾经被山体滑坡塑造过[8,14-15]。山體滑坡活动直接创造了许多地貌,并对其他景观要素产生了间接影响[16]。因此,滑坡地貌应该在更广泛的学科体系中有一席之地[17-18]。在最早的地貌演化模型和传统方法中,滑坡在地貌过程中的作用和意义几乎完全被忽略[17,19-20]。事实上,与缓慢塑造山区的河流和冰川相比,山体滑坡(特别是大型或巨型滑坡)可以在短短几分钟内在远距离上急剧而显著地重新分布地表物质,重塑地貌并改变山地形态[21]。例如,汶川地震引发了56 000多次滑坡,在短时间内突然改变了该地区的地形[22](图 1)。特别是汶川地震导致净物质亏损,即这次地震引发的块体运动量大于造山带增长量[23]。因此,越来越多的证据表明,滑坡过程控制着山坡的形状和地貌演化的速度[24-25]。

从长远来看,滑坡堆积对河流形态有重要影响[9],泥石流经常填满或侵蚀河道[26],山体滑坡经常切断河流并形成滑坡坝湖,可能会持续数千年[27]。一些主要的滑坡坝已成为旅游景点,还会影响山谷形态演变[27]。位于中国陕西省的秦岭翠华山崩塌堰塞湖于公元前780年形成[28],这座由崩塌形成的堰塞坝显著地影响着当地的河流和山地地貌,现已成为著名的风景名胜区(图2A)。形成于2010年的巴基斯坦阿塔巴德滑坡堰塞湖现已成为著名的旅游景点(图2B)。

1.2 限制山体起伏

山体滑坡在山体隆升和侵蚀的长期动态平衡过程中起着重要作用[2,23,29-30]。山地地形可以反映山体隆升与侵蚀的相互作用[30]。尽管构造力变化,但是山体起伏总体上是受到限制的[31-32]。山体滑坡会使现有的山地斜坡变得平缓且稳定[9]。山脉的高度会随着隆升速率的增加而上升,但只会上升到一定的峰顶高度[30-31]。这一观点意味着,地形发育存在阈值坡度和起伏度,大面积滑坡使斜坡降低到阈值角度,从而进一步限制了急剧隆升地区的山脉高度[31]。比如在喜马拉雅山脉东部的纳姆切巴瓦所观察到的[31],高滑坡率限制了相邻山坡的坡度,从而调节了山脉高度。利用卡尔曼二维极限平衡边坡稳定模型,可以广泛地测量边坡的最大高度。Montgomery和Brandon[33]也认为山地隆升不可能无限增长,并且发现大部分的大型滑坡都发生在隆升极限附近。

2 土壤物理性质变化及后续侵蚀加速

首先,山体滑坡可以改变土壤的物理性质[34-35]。滑坡堆积区水平剖面和垂直剖面的粒度分布有所不同[36-37]。而且,Cheng等[34]发现滑坡堆积区土壤样品的饱和含水量、田间持水量和总孔隙度均低于其他地区。研究表明,随着时间的推移,土壤的物理性质将越来越接近原状土。此外,相比于原状土,滑坡区具有较高的黏土组分,土壤团聚体和抗水性多样性[38-39]。

其次,土壤侵蚀是剧烈和渐进过程的结合,山体滑坡是所有景观环境中最严重的土壤侵蚀过程[1,40-41],然而,滑坡引起的土壤侵蚀很难用一般的土壤流失方程(USLE)来表示。事实上,几乎所有的土壤流失方程都关注土壤侵蚀的渐进过程。众所周知,大型滑坡可在很短的时间内导致大量土壤沉积,如果该区域仅在渐进的土壤环境下侵蚀,则该过程可能需要数十年或数百年。

第三,滑坡沉积物将在原始滑坡发生后的几年内通过降雨被重新搬运,这通常会导致灾难性的泥石流[42]。滑坡沉积物质在土壤孔隙形成的渗流通道中具有可变性,并且由于降雨入渗速度快,土体强度降低,因此极易形成泥石流[43-44]。据估算,在2008年汶川地震期间形成的滑坡堆积物引起的泥石流活动将持续20年左右,然后随着时间的推移,边坡将趋于稳定,泥石流的发生频率将呈下降趋势[8]。

最后,滑坡后植被斑块被裸地斑块所取代。由于滑坡后的植被恢复期较长,没有植被保护的松散滑坡沉积物将导致土壤侵蚀加剧[38,43,45]。地震诱发滑坡的年平均侵蚀深度是地震前土壤侵蚀深度的2.26倍[46]。如图4所示,滑坡的土壤侵蚀比原状土更严重,并且山体滑坡在沟壑形成中起着重要作用。一些研究人员发现龙门山地震区剥蚀呈双曲线衰减趋势,预计81年后恢复到震前速率[47]。因此,对滑坡区进行长期的土壤侵蚀监测至关重要[46]。

3 土壤生物和化学性质的变化

山体滑坡通过暴露母质或去除有机质层来改变土壤性质[48]。与邻近地区的土壤相比,滑坡区域土壤的物理、化学和生物性质更加多样化[38,49-50]。

其次,土壤生物化学性质将随着土壤的发展而变化[38,51]。由于重力的作用,营养丰富的土壤通常会向下移动[45,52]。有机质含量作为最重要的特征之一,可以反映滑坡的土壤形成过程[38]。Van Eynde等[53]发现土壤有机碳随着滑坡年龄增加而显著增加,并在大约60年后达到相应的原状土水平。Wilcke等人[50]比较了浅层碎屑土的有机层与邻近原状土的有机层,发现土壤有机层的平均质量按滑坡后缘<中部<脚<参考土的顺序增加。但是,Schrumpf等人[49]提出滑坡过程会将营养物质带到酸性和营养贫瘠的土壤表面,从而提高土壤肥力。此外,Zarin和Johnson(1995)[54]发现随着滑坡年龄的增加,土壤中营养含量将在大约55年后达到滑坡前水平。

4 滑坡对植物的影响

滑坡被认为是天然植被的非生物干扰和植物演替的重要驱动力[55-59]。虽然山体滑坡破坏了群落结构和生态系统功能,但它们打破了优势物种的统治并为其他物种提供了机会[60-61]。在发生山体滑坡后,草本植物构建了与周围地区不同的生态系统[45,62]。在自然植物演替过程中,许多植物侵入山体滑坡,植被覆盖率提高,达到47%左右[46]。山体滑坡后植物物种多样性再次迅速恢复,并在接下来的几年中趋于相对稳定[55,57,63]。植物量和边坡稳定性随时间的变化如图5所示。

其次,山体滑坡在水生和陆生生物多样性中发挥着重要作用,然而这方面的作用长期以来一直被忽视或低估[48,64-65]。滑坡的时空差异性可以显著影响世界各地生态系统的多样性和功能性[21]。滑坡形成后,滑坡生态系统将被重组[21]。山体滑坡可能会促进一些植物物种生长并阻碍其他物种的生长,并进一步改变其动物生态系统[11]。一般来说,在热带森林中滑坡可能促进并保持较高的植物物种多样性[45,66]。滑坡边缘的植物比在滑坡中心更丰富[52,67]。滑坡体堆积区具有相对高的有机物含量,植物生长速率快[45,50]。具有早期演替特征的树木可以持续存活超过70年[68]。此外,物种丰富度和植物丰富度将显示出非线性过程和可预测的轨迹[68-71]。

5 与人类社会的互动

毫无疑问,山体滑坡是地质历史上的自然和普遍现象,即使我们无法观察到它们[11]。由于人类历史上的偏见,我们认为山体滑坡是例外和异常[11]。特别是人类及其建筑物、工程设施、公共服务设施和基础设施区域作为承载体广泛暴露于滑坡的风险之中[72-74]。山区和丘陵区的许多城市和乡镇因为平坦土地紧缺而建立在滑坡的堆积区上[75],如图4所示,山区的村莊建在山体滑坡的堆积区,因此,我们必须学会与山体滑坡及其风险和平共处[76-77]。此外,我们应该注意到山体滑坡并不总是给人类带来负面影响,有时,滑坡形成后一年或两年内,山体滑坡将变为农田和其他土地利用类型(图6)。

参考文献:

[1]GUZZETTI F, REICHENBACH P, CARDINALI M, et al. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology,2005,72(1):272-299.

[2]PETLEY D. Global patterns of loss of life from landslides[J]. Geology,2012,40(10):927-930.

[3]HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194.

[4]IVERSON R M. Landslide triggering by rain infiltration[J].Water Resources Research,2000,36(7):1897-1910.

[5]HUANG R Q. Mechanisms of large-scale landslides in China[J]. Bulletin of Engineering Geology and the Environment,2012,71(1):161-170.

[6]SASSA K, TSUCHIYA S, FUKUOKA H, et al. Landslides:Review of achievements in the second 5-year period (2009—2013)[J].Landslides,2015,12(2):213-223.

[7]邱海军,曹明明,刘闻,等. 基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究[J].地理科学, 2014, 34(1): 110-115.

QIU H J, CAO M M, LIU W, et al. The susceptibility assessment of landslide and its calibration of the models based on three different models[J].Scienta Geographica Sinica, 2014, 34(1):110-115.

[8]邱海军,崔鹏,王彦民,等. 基于关联维数的黄土滑坡空间分布结构及其成因分析[J].岩石力学与工程学报,2015,34(3):546-555.

QIU H J, CUI P, WANG Y M, et al. Spatial distribution structure of loess landslides and cause analysis based on correlated fractal dimension[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):546-555.

[9]SCHUSTER R L, HIGHLAND L M. Overview of the effects of mass wasting on the natural environment[J].Environmental and Engineering Geoscience,2007,13(1):25-44.

[10]KORUP O, DENSMORE A L, SCHLUNEGGER F. The role of landslides in mountain range evolution[J]. Geomorphology, 2010, 120(1): 77-90.

[11]DE BLASIO F V.A short Intoroduction to the Physics of Granular Media[M]∥Introduction to the physics of landslides. Springer, Dordrecht,2011:131-158.

[12]SHRODER J F, OWEN L A, SEONG Y B, et al. The role of mass movements on landscape evolution in the central Karakoram:Discussion and speculation[J]. Quaternary International, 2011, 236(1/2): 34-47.

[13]邱海军,崔鹏,胡胜,等. 陕北黄土高原不同地貌类型区黄土滑坡频率分布[J].地球科学,2016,41(2):343-350.

QIU H J, CUI P, HU S, et al. Size-frequency distribution of landslides in different landforms on the loess plateau of northern Shaanxi[J].Earth Science,2016,41(2):343-350.

[14]HOVIUS N, STARK C P, ALLEN P A. Sediment flux from a mountain belt derived by landslide mapping[J].Geology, 1997, 25(3): 231-234.

[15]SIDLE R C, OCHIAI H. Landslides:Processes, Prediction, and Land Use[M].Washington,D.C.:American Geophysical Union,2006.

[16]CENDRERO A, DRAMIS F. The contribution of landslides to landscape evolution in Europe[J]. Geomorphology, 1996, 15(3/4): 191-211.

[17]CROZIER M J. Landslide geomorphology: An argument for recognition, with examples from New Zealand[J]. Geomorphology, 2010, 120(1/2): 3-15.

[18]邱海军,曹明明,王雁林,等. 黄土丘陵区地质灾害规模参数幂律相依性研究[J].地理科学,2015,35(1):107-113.

QIU H J,CAO M M,WANG Y L,et al.Power law correlations of geohazards in loess hilly region[J].Scientia Geographica Sinica, 2015, 35(1):107-113.

[19]DAVIS W M. The geographical cycle[J]. Geographical Journal, 1899, 14(5):481-504.

[20]PENCK W. Morphological Analysis of Landforms[J].Soil Science,1954,77(1):80.

[21]RESTREPO C, WALKER L R, SHIELS A B, et al. Landsliding and its multiscale influence on mountainscapes[J]. BioScience, 2009, 59(8): 685-698.

[22]FAN X M, JUANG C  H, WASOWSKI J, et al. What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges[J]. Engineering Geology 2018, 241:25-32.

[23]PARKER R N, DENSMORE A L, ROSSER N J, et al. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth[J]. Nature Geoscience, 2011, 4(7): 449-452.

[24]SELBY M J. Dominant geomorphic events in landform evolution[J]. Bulletin International Association of Engineering Geology, 1974, 9(1):85-89.

[25]邱海軍,曹明明,刘闻,等. 区域滑坡空间分布的变维分形特征研究[J].现代地质, 2014, 28(2): 443-448.

QIU H J, CAO M M, LIU W, et al. Research on variable dimension fractal characteristics of spatial distribution of landslides[J].Geoscience, 2014, 28(2):443-448.

[26]GEERTSEMA M, HIGHLAND L, VAUGEOUIS L. Environmental impact of landslides[J]. Landslides-Disaster Risk Reduction 2009:589-607.

[27]COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988, 100(7):1054-1068.

[28]WEIDINGER J T, WANG J X, MA N D. The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P R of China: The benefits of a lake-damming prehistoric natural disaster[J]. Quaternary International, 2002, 93:207-214.

[29]鄭书彦. 滑坡侵蚀及其动力学机制与定量评价研究[D].杨凌:西北农林科技大学, 2002.

[30]SCHMIDT K M, MONTGOMERY D R. Limits to relief[J]. Science, 1995, 270(5236): 617.

[31]ROERING J. Tectonic geomorphology: landslides limit mountain relief[J]. Nature Geoscience, 2012, 5(7):446-447.

[32]王冬梅. 基于3S技术的武都区生态环境变化及驱动力分析[D].兰州:兰州大学, 2013.

[33]MONTGOMERY D R, BRANDON M T. Topographic controls on erosion rates in tectonically active mountain ranges[J]. Earth Planet,2002, 201(3/4):481-489.

[34]CHENG S, YANG G, YU H, et al. Impacts of Wenchuan Earthquake-induced landslides on soil physical properties and tree growth[J].Ecological Indicators, 2012, 15(1):263-270.

[35]邹锡云,许强,赵宽耀,等. 长期浸水作用下重塑黄土渗透特性变化规律分析[J].水利水电技术,2019,50(10):1-13.

ZOU X Y, XU Q, ZHAO K Y, et al. Analysis on changing law of permeability of remolded loess under long-term soaking[J].Water Resources and Hydropower Engineering,2019,50(10):1-13.

[36]SAVAGE S B, LUN C K K. Particle size segregation in inclined chute flow of dry cohesionless granular solids[J]. Journal of Fluid Mechanics, 1988, 189:311-335.

[37]郭帅,胡胜,马舒悦,等. 基于高分辨地形的秦岭山地滑坡特征参数提取分析[J].西北大学学报(自然科学版), 2019, 49(3): 456-462.

GUO S, HU S, MA S Y, et al. Extraction and analysis of characteristic parameters of QinlingMountains landslide based on high-resolution topography[J].Journal of Northwest University ( Natural Science Edition),2019,49(3):456-462.

[38]BOSKA E, LASOTA J, ZWYDAK M, et al. Restoration of forest soil and vegetation 15 years after landslides in a lower zone of mountains in temperate climates[J]. Ecological Engineering, 2016, 97:503-515.

[39]张一希,许强,彭大雷,等. 深圳“12·20”滑坡土体渗透性模拟试验研究[J].水文地质工程地质,2017,44(5):131-136,149.

ZHANG Y X, XU Q, PENG D L, et al. An experimental study of the permeability of the catastrophic landslide at the Shenzhen Landfill[J].Hydrogeology & Engineering Geology, 2017,44(5):131-136,149.

[40]KEEFER D K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions[J]. Geomorphology and Natural Hazards, 1994: 265-284.

[41]OUIMET W B, WHIPPLE K X, ROYDEN L H, et al. The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China)[J]. Geological Society of America Bulletin, 2007, 119(11/12):1462-1476.

[42]CUI Y F, ZHOU X J, GUO C X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall[J]. Journal of Mountain Science, 2017, 14(3):417-431.

[43]CUI P, LIN Y M, CHEN C. Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas[J]. Ecological Engineering, 2012, 44:61-69.

[44]HUANG R Q, FAN X M. The landslide story[J]. Nature Geoscience, 2013, 6(5):325-326.

[45]GUARIGUATA M R. Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico[J]. Journal of Ecology,1990,78(3):814-832.

[46]LIN W T, LIN C Y, CHOU W C. Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake:A case study in Central Taiwan[J]. Ecological Engineering, 2006, 28(1):79-89.

[47]CHEN N S, LI J , LIU L H, et al. Post-earthquake denudation and its impacts on ancient civilizations in the Chengdu Longmenshan region, China[J]. Geomorphology, 2018, 309:51-59.

[48]GEERTSEMA M, POJAR J J. Influence of landslides on biophysical diversity:A perspective from British Columbia[J]. Geomorphology, 2007, 89(1/2):55-69.

[49]SCHRUMPF M, GUGGENBERGER G, SCHUBERT C, et al. Tropical montane rain forest soils: Development and nutrients status along an altitudinal gradient in the south Ecuadorian Andes[J].Erde, 2001,132(1):43-59.

[50]WILCKE W, VALLADAREZ H, STOYAN R, et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador[J].Catena,2003,53(1):79-95.

[51]鄧晓红, 钟方雷, 刘玉卿, 等. 基于生态足迹和主体功能分区的县域灾后重建政策研究——以2011年东乡“3.2”特大滑坡灾害为例[J].冰川冻土, 2012, 34(5):1257-1264.

DENG X H, ZHONG F L, LIU Y Q, et al. Study on post-disaster reconstruction policy based on ecological footprint and major function region regionalization-acase study in Dongxiang landslide hazard area 2010[J].Journal of Glaciology and Geocryology, 2012, 34(5):1257-1264.

[52]WALKER L R, ZARIN D J, FETCHER N, et al. Ecosystem development and plant succession on landslides in the Caribbean[J].Biotropica, 1996, 28(4):566-576.

[53]VAN EYNDE E, DONDEYNE S, ISABIRYE M, et al. Impact of landslides on soil characteristics: Implications for estimating their age[J]. Catena, 2017, 157:173-179.

[54]ZARIN D J, JOHNSON A H. Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico[J]. Geoderma, 1995, 65(3):317-330.

[55]RICHTER M. To what extent do natural disturbances contribute to Andean plant diversity? A theoretical outline from the wettest and driest parts of the tropical Andes[J]. Advances in Geosciences, 2009, 22:95-105.

[56]GONZALEZ A, MICKOVSKI S B. Shallow landslides as drivers for slope ecosystem evolution and biophysical diversity[J]. Landslides, 2017, 14(5):1699-1714.

[57]LI B, ZENG T, RAN J H, et al. Characteristics of the early secondary succession after landslides in a broad-leaved deciduous forest in the south Minshan Mountains[J]. Forest Ecology and Management, 2017, 405:238-245.

[58]杜悦悦,彭建,赵士权,等. 西南山地滑坡灾害生态风险评价——以大理白族自治州为例[J].地理学报,2016,71(9):1544-1561.

DU Y Y, PENG J, ZHAO S Q, et al. Ecological risk assessment of landslide disasters in mountainous areas of Southwest China: A case study in Dali Bai Autonomous Prefecture[J].Acta Geographica Sinica,2016,71(9):1544-1561.

[59]李凯,孙悦迪,江宝骅,等. 基于像元二分法的白龙江流域植被覆盖度与滑坡时空格局分析[J].兰州大学学报(自然科学版),2014,50(3):376-382.

LI K, SUN Y D, JIANG B H et al.Analysis on spatial-temporal patterns of the vegetation coverage and landslides in Bailongjiang River Basin based on the Dimidiate Pixel Model[J].Journal of Lanzhou University(Natural Sciences),2014,50(3):376-382.

[60]WANG X Z, XU W, OOUYANG Z Y, et al. Impact of Wenchuan Earthquake on giant panda habitat in Dujiangyan region[J].Acta Ecologica Sinica, 2008, 28(12):5856-5861.

[61]JOHNSTONE J F, HOLLINGSWORTH T N, CHAPIN F S, et al. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest[J].Global Change Biology, 2010,16(4):1281-1295.

[62]SAKAI A, OHSAWA M. Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan[J].Ecological Research,1993,8(1):47-56.

[63]MUENCHOW J, BRENNING A, RICHTER M. Geomorphic process rates of landslides along a humidity gradient in the tropical Andes[J]. Geomorphology, 2012, 139:271-284.

[64]邱海軍,曹明明,刘闻,等. 区域地质灾害的空间点格局分析研究——以宁强县为例[J].干旱区资源与环境,2014,28(3):107-111.

QIU H J, CAO M M, LIU W, et al. Research on the spatial point pattern of geo-hazard:A case of Ningqiang county[J].Journal of Arid Land Resources and Environment,2014,28(3):107-111.

[65]SASSA K, CANUTI P. Landslides-disaster risk reduction[M].Berlin:Springer Berlin Heidelberg,2009.

[66]GARWOOD N C, JANOS D P, BROKAW N. Earthquake-caused landslides:A major disturbance to tropical forests[J].Science,1979,205(4410):997- 999.

[67]VELZQUEZ E, GMEZ-SAL A. Environmental control of early succession in a landslide on a dry tropical ecosystem (casita volcano, Nicaragua)[J]. Biotropica,2007,39(5):601-609.

[68]MARK A F, DICKINSON K J M. Forest succession on landslides in the fiord ecological region, southwestern New Zealand[J]. New Zealand Journal of Ecology, 1989, 27(3):369-390.

[69]LUNDGREN L. Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, western Ulugru Mountains, Tanzania[J]. Geografiska Annaler Series A: Physical Geography, 1978, 60(3/4):91-127.

[70]DALE V H, CAMPBELL D R, ADAMS W M, et al. Plant succession on the Mount St. Helens debris avalanche deposit[M]∥Ecological Responses to the 1980 Eruption of Mount St.Helens.New York:Springer New York,2005:59-73.

[71]刘传正. 深圳红坳弃土场滑坡灾难成因分析[J].中国地质灾害与防治学报,2016,27(1):1-5.

LIU C Z. Genetic mechanism of landslide tragedy happened in Hong′ao dumping place in Shenzhen, China[J].The Chinese Journal of Geological Hazard and Control,2016,27(1):1-5.

[72]GUZZETTI F. Landslide fatalities and the evaluation of landslide risk in Italy[J]. Engineering Geology, 2000, 58(2):89-107.

[73]DAI F C, LEE C F, NGAI Y Y. Landslide risk assessment and management:An overview[J].Engineering Geology,2002,64(1):65-87.

[74]REMONDO J, BONACHEA J, CENDRERO A. Quantitative landslide risk assessment and mapping on the basis of recent occurrences[J]. Geomorphology, 2008, 94(3/4):496-507.

[75]NADIM F, KJEKSTAD O, PEDUZZI P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2):159-173.

[76]GLADE T, ANDERSON M G, CROZIER M J. Landslide Hazard and Risk[M]. Chichester, West Sussex, England:John Wiley and Sons Ltd,2005.

[77]向喜瓊. 区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学, 2005.

(编 辑 李 波,邵 煜)

收稿日期:2019-12-05

基金项目:第二次青藏高原综合科学考察研究项目(2019QZKK0903);国家重点研发计划政府间国际创新合作专项(2018YFE0100100);国家自然科学基金项目(41771539)

作者简介:邱海军,男,陕西神木人,博士,教授,博士生导师,从事山地灾害研究。

猜你喜欢

土壤侵蚀山体滑坡
滑坡推力隐式解与显式解对比分析——以河北某膨胀土滑坡为例
济南市山体修复中的植物应用与技术——以济南市卧虎山山体公园为例
乡村聚落土壤侵蚀环境与水土流失研究综述
浅谈公路滑坡治理
海坛岛土壤侵蚀问题研究
基于Fluent的滑坡入水过程数值模拟
“监管滑坡”比“渣土山”滑坡更可怕
大别山区土壤侵蚀动态变化及趋势预测
山体别墅设计分析
城市山体保护规划的实践与探索——以武汉市新洲区山体保护规划为例