花后增温对双季晚粳稻产量和稻米品质的影响
2020-04-11杨陶陶解嘉鑫黄山谭雪明潘晓华曾勇军石庆华张俊曾研华
杨陶陶,解嘉鑫,黄山,谭雪明,潘晓华,曾勇军,石庆华,张俊,曾研华
花后增温对双季晚粳稻产量和稻米品质的影响
杨陶陶1,解嘉鑫1,黄山1,谭雪明1,潘晓华1,曾勇军1,石庆华1,张俊2,曾研华1
(1作物生理生态与遗传育种教育部重点实验室/江西农业大学双季稻现代化生产协同创新中心/南方粮油作物协同创新中心,南昌 330045;2中国农业科学院作物科学研究所,北京 100081)
【】明确花后增温对双季晚粳稻产量和稻米品质的影响,以期为未来气候变暖条件下双季晚粳稻安全生产和优质栽培提供理论依据。本研究于2017—2018年在江西农业大学上高科技驿站试验基地进行,该地区位于江西双季稻主产区。以籼粳杂交稻甬优1538为试验材料,设置花后增温(post-anthesis warming treatment,PAW;从抽穗期到成熟期昼夜不间断增温)和不增温对照(ambient temperature treatment,CK;安装与增温处理相同的装置,但不供电)2个处理,随机区组设计,3次重复。采用稻田开放式远红外主动增温(free-air temperature increase,FATI)系统对水稻冠层进行增温,对比分析了不增温和花后增温条件下,晚粳稻产量、产量构成、加工品质、外观品质、RVA谱特征值、直链淀粉含量、蛋白质含量和氨基酸含量的变化。花后增温导致晚粳稻甬优1538的产量和稻米品质发生明显变化,且2年变化趋势基本一致。与不增温对照相比,花后增温2.2℃显著降低了晚粳稻产量,平均降幅为4.4%。花后增温条件下,2年晚粳稻的糙米率、精米率和整精米率均无显著变化,但2年的垩白粒率和垩白度分别平均显著提高了27.4%和24.4%。花后增温提高了米粉RVA谱特征值的峰值黏度、热浆黏度和糊化温度,降低了其消减值,而对崩解值和最终黏度无显著影响。花后增温条件下,直链淀粉含量呈下降趋势,2年平均降幅为6.4%;但精米中蛋白质相对含量和绝对含量均呈增加趋势,2年平均增幅分别为8.7%和6.6%。另外,花后增温均提高了精米中非必需氨基酸和必需氨基酸的含量,并且非必需氨基酸对增温的响应比必需氨基酸敏感,其中非必需氨基酸的总量显著提高了5.7%。从氨基酸的相对比例可以发现,花后增温对绝大多数氨基酸的相对比例无显著影响,而酪氨酸和甲硫氨酸的相对比例显著提高。花后增温降低了晚粳稻产量,对稻米加工品质无显著影响,使稻米外观品质品和蒸煮品质变差,而有利于改善其营养品质和食味品质。
全球变暖;花后增温;双季晚粳稻;产量;稻米品质
0 引言
【研究意义】水稻(L.)是人类最重要的口粮作物之一,我国是全球稻米最大的生产国和消费国[1]。近年来,南方双季稻区“籼改粳”得到迅速发展,其中“晚粳”种植模式是南方双季稻区推广粳稻的主要模式[2-3]。与1850—1900年全球地表平均温度相比,2006—2015年地表平均温度升高了0.87℃,且根据预测2030—2052年表面温度将进一步升高1.5℃[4]。同时气候变暖在昼夜之间呈现不对称性,日最高温度升高幅度低于日最低温度升高幅度,且冬季温度升高幅度高于夏季[5-6]。因此,研究南方双季晚粳稻产量和稻米品质对气候变暖的响应势必具有重要意义。【前人研究进展】灌浆结实期是水稻产量形成的关键时期。多数研究表明,灌浆结实期高温往往会显著降低水稻结实率和千粒重,从而导致水稻产量大幅下降[7-10]。而运用FATI系统研究发现,增温对水稻产量的影响在不同水稻生产系统和生产季节之间存在较大差异[1, 11]。例如,Rehmani等[12]研究指出,花后增温2.2℃显著降低了籼稻产量,主要是因为千粒重下降显著;而窦志[13]4年研究表明,花后增温3.0℃对粳稻产量和千粒重均无显著影响。CHEN等[1]研究表明,夜间增温0.5—1.0℃降低双季稻区(江西)早稻和稻麦轮作区(江苏)水稻产量,但能提高双季稻区(江西)晚稻和一季稻区(吉林)水稻产量。灌浆结实期温度除对水稻产量产生显著影响外,对稻米品质的影响也至关重要。前人研究表明,灌浆结实期高温对稻米加工品质、外观品质、营养品质、蒸煮和食味品质均有一定程度的影响[12, 14-15]。多数研究认为,高温条件下精米率、整精米率、直链淀粉含量和回复值呈下降趋势,而垩白粒率、垩白度、蛋白质含量和糊化温度呈上升趋势[16-19]。但高温对稻米部分品质的影响因品种类型而异。Zhong等[20]认为高温条件下低直链淀粉水稻品种的直链淀粉含量降低,而高直链淀粉水稻品种的直链淀粉含量升高或不变。Shi等[21]发现高温显著降低温度敏感性品种的蛋白质含量。近些年运用FATI系统研究发现,灌浆结实期增温对加工品质、外观品质、直链淀粉含量和蛋白质含量的影响与大多数高温研究结果一致[12,14-15, 22]。同时,灌浆结实期增温条件下,RVA谱特征值峰值黏度、崩解值和糊化温度有上升趋势,消减值有下降趋势[14, 23-24]。但也有研究表明,增温对双季稻区早晚稻加工品质有改善作用[15],且加工品质对增温的响应在年份和品种间存在差异[24-25]。另外,增温对米粉RVA谱特征值的影响在不同季节和不同品种之间也存在较大差异。杨陶陶等[15]研究发现增温对早籼稻不同基因型品种崩解值的影响呈相反趋势,而对晚籼稻和晚粳稻消减值的影响也不一。【本研究切入点】花后增温对粳稻产量和稻米品质影响的研究主要集中在稻麦轮作区或一季稻区,而运用开放式主动增温方式,揭示南方双季晚粳稻产量和稻米品质对花后增温响应的研究较少。【拟解决的关键问题】本研究通过在双季稻区建立FATI系统,以籼粳杂交稻甬优1538为试验材料,研究花后增温对双季晚粳稻产量和稻米品质的影响,以期为未来气候变暖下双季晚粳稻的优质丰产栽培提供科学依据。
1 材料与方法
1.1 试验地点概况
试验于2017—2018年在江西农业大学上高科技驿站试验基地进行(115°09′E,28°31′N)。该试验地点位于江西双季稻主产区,为亚热带季风气候,年平均温度17.5℃,年平均降水量1 650 mm。土壤基础理化性质为pH 5.5、有机质28.6 g·kg-1、全氮2.1 g·kg-1、碱解氮195.0 mg·kg-1、有效磷(P2O5)22.1 mg·kg-1、速效钾(K2O)65.2 mg·kg-1。
1.2 试验设计
试验设置2个处理,分别为花后增温处理(post- anthesis warming treatment,PAW),从抽穗期到成熟期昼夜不间断增温;不增温处理(ambient temperature treatment,CK),安装与增温处理相同装置,但不供电。采用随机区组设计,3次重复,每个小区面积为48 m2(长×宽=8 m×6 m)。试验采用FATI系统进行增温处理,该系统参照Dong等[26]的设计方案,即用于加热的远红外黑体管(功率1 500 W,长180 cm,直径1.8 cm)悬挂高于水稻冠层(倒一叶中部)上方约0.75 m处。水稻冠层温度由温度记录仪(ZDR-41,杭州泽大仪器有限公司,浙江)自动记录,记录间隔为1 h。
1.3 田间管理
供试品种为籼粳杂交稻甬优1538。2017年和2018年的播种期分别为6月26日和6月21日,抽穗期分别为9月14日和9月3日,成熟期分别为11月6日和10月31日。于28 d秧龄时手工移栽,栽插规格25 cm×13 cm,每穴3苗。氮肥为尿素(N含量为46%),施用量为(纯氮)210.0 kg·hm-2,基肥﹕分蘖肥﹕穗肥=4﹕2﹕4;磷肥为钙镁磷肥(P2O5含量为12%),施用量为(P2O5)105.0 kg·hm-2,全做基肥;钾肥为氯化钾(K2O含量为60%),施用量(K2O)189.0 kg·hm-2,基肥﹕穗肥=7﹕3。其他田间管理措施与优质高产双季晚粳稻生产相同。2017年和2018年抽穗后的气象数据(平均温度、降雨量和日照时数)如图1所示。
1.4 测定指标和方法
1.4.1 产量及其构成 于成熟期每个小区调查40穴,用于计算有效穗平均数。在每个小区远红外黑体管两侧对称位置收取水稻40穴用于测定实际产量。根据平均有效穗数,每个小区取3穴用于考察每穗粒数、结实率和千粒重。收获后的稻谷在室温下储存3个月后,用于测定稻米品质。
1.4.2 稻米品质 糙米率、精米率、整精米率、长宽比、垩白粒率、垩白度和直链淀粉含量的测定方法参照中华人民共和国国家标准GB/T17891—2017《优质稻谷》,测定重复2次。
1.4.3 RVA谱特征值 采用RVA快速黏度分析仪(Super 3,Newport Scientific,澳大利亚),按照AACC规程(1995-61-02)标准方法测定米粉黏滞特性,测定重复2次。RVA谱特征值包括峰值黏度(peak viscosity)、热浆黏度(trough viscosity)、崩解值(breakdown,峰值黏度-热浆黏度)、最终黏度(final viscosity)、消减值(setback,最终黏度-峰值黏度)、糊化温度(pasting temperature)。
1.4.4 蛋白质和氨基酸含量 采用凯氏定氮仪(Kjeltec 8400,FOSS,丹麦)测定精米中的含氮量,再乘以换算系数5.95[27],并计算精米中蛋白质绝对含量(mg·grain-1)。精米中氨基酸含量采用氨基酸自动分析仪(L-8900,Hitachi Corp,日本)测定[27],并计算每种氨基酸含量占总氨基酸含量的比例(%)。
1.5 统计与分析
试验数据采用Microsoft Excel 2016和DPS 7.5进行处理和统计分析,采用LSD法进行多重比较。
2 结果
2.1 水稻冠层温度
开放式主动增温明显提高了水稻冠层温度,且夜间增温幅度高于白天增温幅度(表1)。其中2017年全天、夜间和白天冠层温度分别提高了1.8、2.0和1.4℃;2018年分别提高了2.4、3.1和1.7℃,2年增温处理达到了花后冠层温度升高2.0℃的目标。因此,本试验中开放式主动增温系统能较好地模拟未来气候变暖的基本趋势。
图1 2017—2018年抽穗期至成熟期的日平均温度、降雨量和日照时数
表1 花后增温对水稻冠层温度的影响
2.2 产量和产量构成
由表2可知,花后增温显著影响晚粳稻产量,2年产量平均降幅达4.4%,且2017年产量显著降低了5.8%,主要是由于增温显著降低了千粒重。而花后增温对有效穗数、每穗粒数和结实率无显著影响。方差分析表明,结实率在年际之间存在显著差异,千粒重在年份和处理间有显著的互作效应。
2.3 加工和外观品质
花后增温对2年加工品质(糙米率、精米率和整精米率)均无显著影响(表3),但精米率和整精米率在年际间存在极显著差异,2017年精米率和整精米率显著高于2018年。此外,花后增温显著提高了垩白粒率和垩白度,2017年垩白粒率和垩白度分别提高了31.3%和31.0%,2018年垩白粒率和垩白度分别提高了21.4%和17.7%,且垩白粒率和垩白度在年际间存在显著差异。
2.4 蒸煮食味品质
花后增温条件下,米粉峰值黏度、热浆黏度和糊化温度有上升趋势,而消减值有下降趋势,对崩解值和最终黏度无显著影响(表4)。与不增温相比,2017年和2018年峰值黏度分别显著提高了4.7%和5.2%,热浆黏度分别显著提高了6.6%和9.4%。花后增温降低了精米中直链淀粉含量,其中2017年直链淀粉含量显著降低了8.9%。方差分析表明,稻米RVA特征值和直链淀粉含量在年际间存在显著或极显著差异。
表2 花后增温对产量和产量构成的影响
同一列不同小字母表示在0.05水平上差异显著。ns表示差异不显著,*和**分别表示在0.05和0.01水平上差异显著。下同
Values followed by different lowercase letters within a column is significantly different at 0.05 probability level. ns indicates no significant difference, * and ** indicate significant difference at 0.05 and 0.01 levels, respectively. The same as below
表3 花后增温对加工品质和外观品质的影响
表4 花后增温对直链淀粉含量和米粉RVA特征值的影响
2.5 营养品质
由图2可知,花后增温条件下,精米中蛋白质相对含量和绝对含量均呈增加趋势,其中2017年蛋白质相对含量和绝对含量分别显著增加了13.2%和10.0%。方差分析表明,蛋白质相对含量和绝对含量在年际间均无显著差异,但相对含量在年份和处理之间存在显著互作效应。花后增温均提高了精米中非必需氨基酸和必需氨基酸含量,而且非必需氨基酸对增温的响应比必需氨基酸敏感,其中非必需氨基酸总量显著提高了5.7%(表5)。在17种氨基酸中,花后增温著提高了天冬氨酸、谷氨酸、甘氨酸、酪氨酸和甲硫氨酸的含量,而对其他非必需氨基酸和必需氨基酸均无显著影响。从氨基酸相对比例可以发现,花后增温对绝大多数氨基酸相对比例无显著影响,但酪氨酸和甲硫氨酸的相对比例显著提高。
不同小字母表示在处理和年份间存在显著差异(P<0.05)
表5 花后增温对精米中氨基酸含量的影响(2018)
3 讨论
3.1 花后增温对晚粳稻产量的影响
前人研究表明,增温对水稻产量的影响结果不一[11-12, 28-29],其对水稻产量的影响主要取决于不同水稻种植系统和种植季节的环境温度[1, 11]。在稻麦轮作区,花后增温会显著降低籼稻产量,主要是因为千粒重显著下降[12],而对粳稻产量无显著影响[23];在双季稻区,花后增温对早晚稻产量均无显著影响[15]。本研究结果表明,在南方双季稻区,2年田间花后增温会显著降低晚粳稻产量,平均降幅为4.4%,且2017年差异显著(表2)。从产量构成来看,晚粳稻产量降低主要与籽粒千粒重下降有关,其余产量构成因素无明显变化。花后增温降低了晚粳稻千粒重可能是因为增温加速了籽粒灌浆进程,缩短了有效灌浆时间[23];且增温在一定程度上也不利于籽粒光合产物积累[28, 30],从而导致千粒重下降。一般来说,高温会降低水稻花粉育性,从而导致水稻结实率下降[31-32]。本研究中增温2.2℃对水稻结实率无显著影响,因为一定增温幅度并不会影响花粉活性[13]。此外,晚粳稻结实率在年际之间存在极显著差异,这可能与2年水稻抽穗扬花期间环境温度差异较大有关(图1)。
3.2 花后增温对晚粳稻稻米品质的影响
加工品质包括糙米率、精米率和整精米率,特别是整精米率主要直接决定着稻米的经济效益。大量研究表明,灌浆结实期温度升高会导致水稻精米率和整精米率下降[7, 12, 14, 27],主要是由于随着温度的升高垩白粒率和垩白度显著增加,导致稻米在加工过程中易碎[12, 14]。也有研究表明,增温有利于改善稻米加工品质,但加工品质在品种和季节之间存在较大差异[15, 24]。本研究中,花后增温虽然显著提高了晚粳稻垩白粒率和垩白度,但对稻米加工品质均无显著影响(表3)。温度升高对稻米加工品质的影响存在一定阈值,灌浆期日均温保持在21—26℃有利于改善稻米加工品质[33]。本试验中,晚粳稻在灌浆期间的日平均温度为21.0℃,其中夜间平均温度为18.0℃(表1)。因此,花后增温2.2℃可能有利于改善稻米加工品质。在稻米品质指标中,稻米垩白度和垩白粒率对温度最为敏感[5]。众多研究表明,灌浆结实期温度升高会增加稻米垩白度和垩白粒率[21, 24, 30]。垩白的形成与灌浆结实期温度成显著正相关[34],灌浆结实期温度的升高加快了籽粒起始灌浆速率,导致胚乳中淀粉体排列折叠松散和蛋白体增大,进而导致垩白增加[21-22, 35]。另外,本研究中2017年垩白粒率和垩白度均显著高于2018年,从而导致2018年精米率和整精米率显著低于2017年,这可能和2018年环境温度较高有关(表1)。
直链淀粉含量与米饭硬度、黏性和吸水性等指标紧密相关,是用于评价稻米食味品质的重要指标之一[36-37]。一般而言,中等直链淀粉含量的稻米拥有较好的食味品质[14, 38]。大多数研究认为灌浆结实期温度的升高会导致直链淀粉含量降低[7, 14, 27, 39],本研究结果与之一致。前人研究表明,温度对稻米直链淀粉含量的影响与品种本身的直链淀粉含量高低有关,低直链淀粉含量品种的直链淀粉含量与灌浆结实期温度呈负相关,而高直链淀粉含量品种的直链淀粉含量与灌浆结实期温度呈正相关[20]。而本研究选择的晚粳稻品种甬优1538直链淀粉含量偏低(14.6%),可能对温度反应相对较为敏感。因此,花后增温会降低其直链淀粉含量。除了直链淀粉含量,RVA谱特征值也能够反映出稻米的蒸煮和食味品质,较好食味品质的稻米往往具有较高的峰值黏度、崩解值和较低的消减值[37, 39]。Dou等[14]和Liu等[27]研究表明灌浆结实期温度的升高提高了峰值黏度、崩解值,但降低了消减值,本研究也得出了类似结果(表4)。因此,结合直链淀粉和RVA谱特征值变化趋势,花后增温可能有利于改善晚粳稻食味品质。但本研究还发现花后增温提高了米粉糊化温度(表4),而糊化温度的升高意味着较长的煮饭时间和较高的煮饭温度,使稻米蒸煮更加困难[14]。
稻米中的蛋白质和氨基酸是人类营养的重要来源。蛋白质的合成主要受灌浆前中期温度的影响,而对后期温度响应较小[40],温度偏高或偏低皆不利于蛋白质形成[41],且蛋白质的合成对温度的响应因品种不同而不同[42]。本研究结果表明,花后增温均显著提高了蛋白质的绝对含量和相对含量(图2),与Liu等[27]研究结果一致。但也有研究认为,随着灌浆结实期温度的升高稻米中蛋白质有下降趋势[21, 43]。蛋白质的合成主要受谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)调控[44],花后增温1.9—4.0℃能提高GS和GOGAT活性,从而提高了蛋白质含量[22]。但灌浆结实期间温度的升高引起稻米淀粉积累量减少和千粒重降低,也间接导致了稻米蛋白质含量的相对增加[27]。因此,花后增温降低了籽粒粒重,也有可能导致蛋白质含量升高。本研究中,花后增温虽然提高了蛋白质含量,有利于改善稻米营养品质,但稻米中较高的蛋白质含量会影响稻米的吸水、膨胀和糊化,从而导致稻米蒸煮食味品质下降[45-46]。因此,本研究中评价花后增温对晚粳稻蒸煮食味品质的响应,应综合考虑直链淀粉含量、RVA谱特征值和蛋白质含量三者的变化效应。前人研究表明,灌浆结实期温度的升高会提高氨基酸的总量,但不同氨基酸组分对温度的响应程度不同[22-23, 27],且不同品种的氨基酸含量对增温的响应存在一定差异[14]。本研究发现增温均提高了非必需氨基酸和必需氨基酸含量,且对其中5种氨基酸有显著影响(表5),这与Dou等[23]研究结果相似。另外,增温对氨基酸相对比例存在一定影响,其中酪氨酸和甲硫氨酸相对比例增大,说明增温改变了稻米中氨基酸各组分的平衡,可能是因为酪氨酸和甲硫氨酸的代谢途径对温度较为敏感[23],其机理有待于进一步研究。
4 结论
两年田间开放式主动增温试验结果表明,花后增温2.2℃降低了晚粳稻甬优1538的产量,平均降幅达4.4%。花后增温处理下,晚粳稻加工品质无显著变化,垩白粒率和垩白度显著增加,导致稻米外观品质变差。花后增温降低了直链淀粉含量和消减值,提高了峰值黏度、糊化温度、蛋白质和氨基酸含量。因此,花后增温改善了稻米营养品质和食味品质,但使其蒸煮品质变差。本研究可为未来气候变暖条件下双季晚粳稻产量提升和米质调优提供理论依据。
[1] CHEN J, CHEN C Q, TIAN Y L, ZHANG X, DONG W J, ZHANG B, ZHANG J, ZHENG C Y, DENG A X, SONG Z W, PENG C R, ZHANG W J. Differences in the impacts of nighttime warming on crop growth of rice-based cropping systems under field conditions., 2017, 82: 80-92.
[2] 成臣, 曾勇军, 王祺, 谭雪明, 商庆银, 曾研华, 石庆华, 金霄. 氮肥运筹对南方双季晚粳稻产量及品质的影响. 植物营养与肥料学报, 2018, 24(5): 1386-1395.
CHENG C, ZENG Y J, WANG Q, TAN X M, SHANG Q Y, ZENG Y H, SHI Q H, JIN X. Effects of nitrogen application regime on japonica rice yield and quality of the late rice in the double rice system in southern China., 2018, 24(5): 260-269. (in Chinese)
[3] 张军, 张洪程, 霍中洋, 李国业, 董啸波, 花劲, 郭保卫, 周培建, 程飞虎, 黄大山, 陈忠平, 陈国梁, 戴其根, 许轲, 魏海燕, 高辉. 不同栽培方式对双季晚粳稻产量及温光利用的影响. 中国农业科学, 2013, 46(10): 2130-2141.
ZHANG J, ZHANG H C, HUO Z Y, LI G Y, DONG X B, HUA J, GUO B W, ZHOU P J, CHENG F H, HUANG D S, CHEN Z P, CHEN G L, DAI Q G, XU K, WEI H Y, GAO H. Effects of cultivation methods on yield and utilization of temperature and light of late japonica rice in southern double cropping rice areas., 2013, 46(10): 2130-2141. (in Chinese)
[4] PCC.. Cambridge: Cambridge University Press, 2018: 3-4.
[5] PENG S S, PIAO S L, CIAIS P, MYNENI R B, CHEN A P, CHEVALLIER F, DOLMAN A J, JANSSENS I A, PENUELAS J, ZHANG G X, VICCA S, WAN S Q, WANG S P, ZENG H. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation., 2013, 501(7465): 88-92.
[6] CHEN Y, ZHANG Z, TAO F L. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0℃., 2018, 9(2): 543-562.
[7] XIONG D L, LING X X, HUANG J L, PENG S B. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality.2017, 141: 1-9.
[8] YAN H L, ZHANG B L, ZHANG Y B, CHEN X L, XIONG H, MATSUI T, TIAN X H. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production., 2017, 7: 1-9.
[9] JAGADISH S, CRAUFURD P Q, WHEELER T R. High temperature stress and spikelet fertility in rice (L.)., 2007, 58(7): 1627-1635.
[10] SIDDIK M A, ZHANG J, CHEN J, QIAN H Y, JIANG Y, RAHEEM A K, DENG AX, SONG Z W, ZHENG C Y, ZHANG W J. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period., 2019, 106: 30-38.
[11] LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980., 2011, 333(6042): 616-620.
[12] REHMANI M I A, WEI G B, HUSSAIN N, DING C Q, LI G H, LIU Z H, WANG S H, DING Y F. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta., 2014, 156: 231-241.
[13] 窦志. 灌浆期开放式增温对水稻籽粒灌浆和品质的影响及氮素粒肥的调控效应[D]. 南京: 南京农业大学, 2017.
DOU Z. Effects of free-air warming during grain filling stage on rice grain filling and quality and the regulation effects of nitrogen spikelet fertilizer[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[14] DOU Z, TANG S, CHEN W Z, ZHANG H X, LI G H, LIU Z H, DING C Q, CHEN L, WANG S H, ZHANG H C, DING Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta., 2018, 81: 118-126.
[15] 杨陶陶, 胡启星, 黄山, 曾研华, 谭雪明, 曾勇军, 潘晓华, 石庆华, 张俊. 双季优质稻产量和品质形成对开放式主动增温的响应. 中国水稻科学, 2018, 32(6): 572-580.
YANG T T, HU Q X, HUANG S, ZENG Y H, TAN X M, ZENG Y J, PAN X H, SHI Q H, ZHANG J. Response of yield and quality of double-cropping high quality rice cultivars under free-air temperature increasing., 2018, 32(6): 572-580. (in Chinese)
[16] MADAN P, JAGADISH S V K, CRAUFURD P Q, FITZGERALD M, LAFARGE T, WHEELER T R. Effect of elevated CO2and high temperature on seed-set and grain quality of rice., 2012, 63(10): 3843-3852.
[17] FAHAD S, HUSSAIN S, SAUD S, HASSAN S, CHAUHAN B S, KHAN F, IHSAN M Z, ULLAH A, WU C, BAJWA A A, ALHARBY H, AMANULLA H, NASIM W, SHAHZAD B, TANVEER M, HUANG J L. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures., 2016, 11(7): e0159590.
[18] CHUN A, LEE H J, HAMAKER B R, JANASWAMY S. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice ()., 2015, 63(12): 3085-3093.
[19] 滕中华, 智丽, 宗学凤, 王三根, 何光华. 高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响. 作物学报, 2008, 34(9): 1662-1666.
TENG Z H, ZHI L, ZENG X F, WANG S G, HE G H. Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants., 2008, 34(9): 1662-1666. (in Chinese).
[20] ZHONG L J, CHENG F M, WEN X, SUN Z X, ZHANG G P. The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars., 2010, 191(3): 218-225.
[21] SHI W J, MUTHURAJAN R, RAHMAN H, SELVAM, PENG S B, ZOU Y B, JAGADISH K S V. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality., 2013, 197: 825-837.
[22] TANG S, CHEN W Z, LIU W Z, ZHOU Q Y, ZHANG H X, WANG S H, DING Y F. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice., 2018, 84: 20-29.
[23] DOU Z, TANG S, LI G H, DING C Q, CHEN L, WANG S H, DING Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage., 2017, 57(4): 1-10.
[24] 杨陶陶, 孙艳妮, 曾研华, 黄山, 张俊, 谭雪明, 曾勇军, 潘晓华. 花后增温对双季优质稻产量和品质的影响. 核农学报, 2019, 33(3): 583-591.
YANG T T, SUN Y N, ZENG Y H, HUANG S, ZHANG J, TAN X M, ZENG Y J, PAN X H. Effect of post-anthesis warming on the grain yield and quality of double-cropped high-quality rice cultivars., 2019, 33(3): 583-591. (in Chinese)
[25] 董文军. 昼夜不同增温对粳稻产量和品质的影响研究[D]. 南京: 南京农业大学, 2011.
DONG W J. Effects of asymmetric warming on grain yield and quality of japonica rice [D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[26] DONG W J, CHEN J, ZHANG B, TIAN Y L, ZHANG W J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China., 2011, 123(3): 259-265.
[27] LIU Q H, WU X, MA J Q, LI T, ZHOU X B, GUO T. Effects of high air temperature on rice grain quality and yield under field condition., 2013, 105: 446-454.
[28] CAI C, YIN X Y, HE S Q, JIANG W Y, SI C F, STRUIK P C, LUO W H, LI G, XIE Y T, XIONG Y, PAN G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2and temperature in FACE experiments., 2016, 22: 856-874.
[29] ZHAO C, LIU B, PIAO S L, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, DURAND J L, ELLIOTT J, EWERT F, JANSSEDS I A, LI T, LIN E, LIU Q, MARTRE P, MULLER C, PENG S S, PENUELAS J, RUANE A C, WALLACH D, WANG T, WU D H, LIU Z, ZHU Y, ZHU Z C, ASSENG S. Temperature increase reduces global yields of major crops in four independent estimates., 2017, 114(35): 9326-9331.
[30] MOHAMMED A R, TARPLEY L. Effects of high night temperature and spikelet position on yield-related parameters of rice (L.) plants., 2010, 33(2): 117-123.
[31] 兰旭, 顾正栋, 丁艳菲, 王珂, 江琼, 朱诚. 花期高温胁迫对水稻颖花生理特性的影响. 中国水稻科学, 2016, 30(6): 637-646.
LAN X, GU Z D, DING Y F, WANG K, JIANG Q, ZHU C. Effect of high temperature stress on physiological characteristics of spikelet of rice during flowering stage., 2016, 30(6): 637-646. (in Chinese)
[32] DONG W J, CHEN J, WANG L L, TIAN Y L, ZHANG B, LAI Y C, MENG Y, QIAN C R, GUO J. Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China., 2014, 2: 63-69.
[33] 李林, 沙国栋, 陆景淮. 水稻灌浆期温光因子对稻米品质的影响. 中国农业气象, 1989, 10(3): 33-38.
LI L, SHA G D, LU J H. Effects of temperature and light factors on rice quality during grain filling stage., 1989, 10(3): 33-38. (in Chinese)
[34] CHEN C, HUANG J L, ZHU L Y, SHAH F, NIE LX, CUI K H, PENG S B. Varietal difference in the response of rice chalkiness to temperature during ripening phase across different sowing dates., 2013, 151: 85-91.
[35] ISHIMARU T, HORIGANE A K, IDA M, IWASAWA N, SAN-OH Y A, NAKAZONO M, NISHIZAWA N K, MASUMURA T, KONDO M, YOSHIDA M. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high- temperature stress., 2009, 50(2): 166-174.
[36] 徐栋, 朱盈, 周磊, 韩超, 郑雷鸣, 张洪程, 魏海燕, 王珏, 廖桉桦, 蔡仕博. 不同类型籼粳杂交稻产量和品质性状差异及其与灌浆结实期气候因素间的相关性. 作物学报, 2018, 44(10): 1548-1559.
XU D, ZHU Y, ZHOU L, HAN C, ZHENG L M, ZHANG H C, WEI H Y, WANG J, LIAO A H, CAI S B. Differences in yield and grain quality among various types of indica/japonica hybrid rice and correlation between quality and climatic factors during grain filling period., 2018, 44(10): 1548-1559. (in Chinese)
[37] 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52(5): 909-920.
ZHAO C F, YUE H L, HUANG S J, ZHOU L H, ZHAO L, ZHANG Y D, CHEN T, ZHU Z, ZHAO Q Y, YAO S, LIANG W H, LU K, WANG C L. Eating quality and physicochemical properties in Nanjing rice varieties., 2019, 52(5): 909-920. (in Chinese)
[38] FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: the quest for quality., 2009, 14(3): 133-139.
[39] JING L Q, WANG J, SHEN S B, WANG Y X, ZHU J G, WANG Y L, YANG L X. The impact of elevated CO2and temperature on grain quality of rice grown under open-air field conditions., 2016, 96(11): 3658-3667.
[40] 陶红娟. 灌浆结实期高温对水稻产量和品质的影响及其生理机制[D]. 扬州: 扬州大学, 2007.
TAO H J. Grain yield and quality as affected by high temperature during grain filling period and physiological mechanism in rice[D]. Yangzhou: Yangzhou University, 2007. (in Chinese)
[41] 周广洽, 徐孟亮, 李训贞. 温光对稻米蛋白质及氨基酸含量的影响. 生态学报, 1997, 17(5): 87-92.
ZHOU G Q, XU M L, LI X Z. Effects of ecological factors of protein and amino acids of rice., 1997, 17(5): 87-92. (in Chinese)
[42] 孟亚利, 周治国. 结实期温度与稻米品质的关系. 中国水稻科学, 1997, 11(1): 51-54.
MENG Y L, ZHOU Z G. Relationship between rice grain quality and temperature during seed setting period., 1997, 11(1): 51-54. (in Chinese)
[43] 董文军, 田云录, 张彬, 陈金, 张卫建. 非对称性增温对水稻品种南粳44米质及关键酶活性的影响. 作物学报, 2011, 37(5): 832-841.
DONG W J, TIAN Y L, ZHANG B, CHEN J, ZAHNG W J. Effects of asymmetric warming on grain quality and related key enzymes activities for japonica rice (Nanjing 44) under FATI facility., 2011, 37(5): 832-841. (in Chinese)
[44] YAMAGATA H, TANAKA K. The site of synthesis and accumulation of rice storage proteins., 1986, 205(27): 135-145.
[45] 谢黎虹, 罗炬, 唐绍清, 陈能, 焦桂爱, 绍高能, 魏详进, 胡培松. 蛋白质影响水稻米饭食味品质的机理研究. 中国水稻科学, 2013, 27(1): 91-96.
XIE L H, LUO J, TANG S Q, CHEN N, JIAO G A, SHAO G N, WEI X J, HU P S. Proteins affect rice eating quality properties and its mechanism., 2013, 27(1): 91-96. (in Chinese)
[46] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38(4): 657-663.
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H. Studies on the rice RVA profile characteristics and its correlation with the quality., 2005, 38(4): 657-663. (in Chinese).
The impacts of post-anthesis warming on grain yield and quality of laterice in a double rice cropping system
YANG TaoTao1, XIE JiaXin1, HUANG Shan1, TAN XueMing1, PAN XiaoHua1, ZENG YongJun1, SHI QingHua1, ZHANG Jun2, ZENG YanHua1
(1Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/ Collaborative Innovation Center for the Modernization Production of Double Cropping Rice, Jiangxi Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang 330045;2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081)
【】The aim of this study was to evaluate the response of the grain yield and quality of laterice in a double rice cropping system to post-anthesis warming, so as to provide a theoretical basis for the safe production and high quality cultivation of double-cropped laterice under the future warming conditions.【】This experiment was conducted at Shanggao Experimental Station of Jiangxi Agricultural University in 2017 and 2018, which was located in the main producing area of a double rice cropping system. The field warming experiment consisted of post anthesis warming treatment (PAW:increases temperature day and night continuously from heading stage to maturity stage) and ambient temperature treatment (CK) with three replicates in a randomized complete block design. The tested rice cultivar washybrid rice Yongyou1538.PAW treatment was treated with a free-air temperature increase (FATI) facility. Grain yield, yield components, milling quality, appearance quality, RVA, amylose content, protein content, and amino acid content were compared and analyzed between control and post-anthesis warming treatments. 【】Grain yield and quality of Yongyou 1538 changed obviously under PAW, and the change trend was basically consistent in two years. The specific performances were as follows: compared with CK, post-anthesis warming with an average canopy temperature increase of 2.2℃ decreased the grain yield by an average of 4.4% in two years. PAW had no significant effects on the milling quality, but increased chalky grain rate and chalkiness by an average of 27.4% and 24.4% in two years, respectively. Peak viscosity, trough viscosity, and pasting temperature showed increase trends under post-anthesis warming condition, but decreased setback, and had no effects on breakdown and final viscosity. The amylose content was decreased by an average of 6.4%, but the protein relative and absolute contents in milled rice were increased by an average of 8.7% and 6.6%, respectively. In addition, the content of non-essential amino acids and essential amino acids in milled rice were both increased under PAW, and the response of non-essential amino acids to PAW was more sensitive than that of essential amino acids, among which the total amount of non-essential amino acids was significantly increased by 5.7%. From the relative ratio of amino acids, it could be found that PAW had no significant effect on the relative ratio of most amino acids, but Tyr and Met. 【】Post-anthesis warming decreased grain yield of laterice, deteriorated its appearance and cooking quality, but benefited its nutritional and eating quality.
global warming; post-anthesis warming; double-cropped laterice; grain yield; grain quality
10.3864/j.issn.0578-1752.2020.07.004
2019-08-26;
2019-10-18
“十三五”国家重点研发计划(2016YFD0300501)、“十三五”江西省重点研发计划(20171BBF60030)
杨陶陶,E-mail:15170477995@163.com。通信作者谭雪明,E-mail:txmfy@163.com。通信作者曾研华,E-mail:zyh74049501@163.com
(责任编辑 杨鑫浩)