毛乌素沙地风沙土粒径和矿物组成对固定态铵含量的影响
2020-03-03佘维维秦树高乔艳桂张宇清
刘 娜,佘维维,2,秦树高,2,乔艳桂,刘 靓,张宇清,2
毛乌素沙地风沙土粒径和矿物组成对固定态铵含量的影响
刘 娜1,佘维维1,2,秦树高1,2,乔艳桂1,刘 靓1,张宇清1,2※
(1. 北京林业大学水土保持学院,宁夏盐池毛乌素沙地生态系统国家定位观测研究站,北京 100083;2. 北京林业大学水土保持国家林业与草原局重点实验室,北京 100083)
固定态铵是土壤氮素的一种重要形态,对植物生长具有十分重要的作用;然而,风沙土中固定态铵的含量及其影响因素目前并不清楚,限制着对沙地土壤肥力来源及其维持机制的认识。该研究测定了毛乌素沙地裸沙地、沙柳()和油蒿()林地风沙土固定态铵的含量,并分析了土壤粒径及矿物组成对其的影响。结果显示,1)研究区土壤固定态铵平均含量为18.63 mg/kg,占土壤氮库的8.77%,不同植被下土壤中固定态铵含量存在明显差别,油蒿林地土壤固定态铵含量(23.03±1.88 mg/kg)显著高于裸沙地(16.63±0.61 mg/kg)和沙柳林地(16.82± 1.25 mg/kg);2)风沙土粒径组成与固定态铵含量显著相关,粒径越细,固定态铵含量越高,粒径越粗,含量越低;3)风沙土矿物组成与固定态铵含量间无显著关系。研究表明,毛乌素沙地风沙土中固定态铵含量取决于土壤物理构成而非矿物化学组成,植被主要通过影响粒径组成而影响其含量。固定态铵是荒漠土壤肥力的重要组成部分,通过合理的植被建设增加土壤细粒物质,有利于提高固定态铵含量,对土地荒漠化治理和生物生产力的提高具有十分重要的意义。
植被;粒径;风沙土;固定态铵;矿物组成;毛乌素沙地
0 引 言
氮作为植物生长的必要元素[1-3],其输入和可利用性直接影响着植物生长和陆地生态系统净初级生产力[4-8]。自然界绝大部分氮以氮气的形式存在于大气中,生物固氮是氮素向生态系统输入的主要途径之一[9],在陆地生态系统氮循环中起着重要作用[10-12]。除了生物固氮外,供植物生长的部分氮素还来自于大气沉降和岩石风化[13]。当土壤中的氮素未被植物全部吸收时,多余的氮大部分被土壤胶体吸附固定,还有一部分被固定在黏土矿物的晶格中形成固定态铵[14]。固定态铵是指存在于2:1型黏土矿物层间、不能被中性盐所替换出来的铵离子,是土壤氮素的一种重要形态,是植物可以利用氮的给源[15-16],是提高氮素利用率、降低氮素损失的一个重要氮库[17]。土壤对铵的矿物固定与释放是影响土壤氮素供应的重要转化过程之一[18],在一定程度上能够反映土壤“稳肥性”的高低[19]。对于养分贫瘠的荒漠生态系统而言,固定态铵作为一种重要潜在氮源,了解其含量和影响因素,对于认识沙地土壤肥力的形成机制和荒漠生态系统氮循环具有十分重要的意义。
固定态铵含量因地区和土壤类型的不同而存在差异[20],从而对氮库的贡献也有所不同。红壤区固定态铵含量为203.8 mg/kg,占土壤氮库的20.7%;灰漠土区固定态铵含量为182.5 mg/kg,占土壤氮库的39.5%[20]。固定态铵含量受土壤粒径、矿物组成、植被类型等诸多因素影响[21]。因细粒径土壤有更强的吸附性,能吸附更多的铵离子,因此土壤粒径越细,固定态铵含量越高,粒径越粗,含量越低[22]。就矿物组成而言,2:1型黏土矿物(如蛭石、伊利石等)比1:1型黏土矿物(如高岭石等)以及石英、长石等有更强的固铵能力[23],这主要是由于2:1型黏土矿物颗粒细小,比表面积大,颗粒上带有负电荷,具有更强的物理吸附性、表面化学活性以及与铵离子交换的能力[24]。植被一般主要通过影响土壤微生物组成及粒径和矿物组成等,间接影响固定态铵含量[25]。尽管自固定态铵被发现以来,对其含量及影响因素已有大量研究,但主要集中在稻田土、娄土、黄土等土壤类型[17,20],风沙土中固定态铵含量及其影响因素目前并不明晰。
风沙土广泛分布于中国北方半干旱、干旱和极端干旱地区,了解这种特殊土壤类型中固定态铵含量及其影响因素,对于认识风沙土的肥力形成与维持过程、干旱地区氮素循环过程等均具有十分重要的意义。本研究以毛乌素沙地风沙土为研究对象,通过Silva-Bremner法、燃烧法以及X射线衍射法等手段,研究不同植被类型下土壤中固定态铵含量,并分析其与粒径和矿物组成的关系以及占全氮含量的比重,尝试为沙地土壤肥力形成机制和荒漠生态系统氮循环提供新的认识视角。
1 材料与方法
1.1 研究区概况
研究在位于毛乌素沙地西南部的宁夏盐池(37°04′N~38°10′N、106°30′E~107°41′E,海拔1 530 m)开展。研究区属于典型半干旱大陆性季风气候,夏季湿热,冬季干冷。年平均气温8.1 ℃,年均降水量284.8 mm(1955-2013年),降水主要集中在生长季(5-9月),占全年降水量的80%以上,潜在蒸发量为降水量的5-7倍。土壤类型以风沙土为主,结构松散,肥力低下,pH值(8.60±0.06),容重为(1.54±0.02)g/cm3,孔隙度为(42±3)%,有机碳含量(1 125.4±126)mg/kg[26]。区内植被以沙生、旱生植物为主,主要优势种有油蒿()、沙柳()、杨柴()、柠条()等灌木及赖草()、甘草()、软毛虫实()等草本植物。
1.2 试验设计、样品采集及分析
2019年6月,在研究区内选取3个有代表性的样地(图1),分别为裸沙地、沙柳()林地和油蒿()林地,样地基本信息详如表1所示。在每个样地随机选取10个5 m × 5 m的样方(3个样地共30个样方);灌木林地内,每个样方内灌丛下和灌丛间共随机选取10个土壤取样点(其中灌丛下5个,灌丛间5个);裸沙地不分灌丛下和灌丛间,随机选取10个取样点(3个样地共计300个取样点)。为了防止地形变化对试验结果的影响,每个样方尽量集中在同一平坦的地形范围内。取样时,去除土壤表面枯落物后,用土钻(直径3.8 cm)获取0~20 cm土层的土壤,每个样方内采集的土样均匀混合为1个样品,每个样地共获得混合土样10个,3个样地共30个。将采集的土壤样品装入做好标记的自封袋中,带回实验室于阴凉处风干,同时剔除石子、植物根系等。
将风干后的土样按照美国制(1951)的标准[27],分别过2、0.25和0.1 mm土壤筛,分成3个粒径等级(>0.25、0.1~0.25、<0.1 mm),称取每种粒径等级土壤质量以获得各粒径占比,分别测定土壤固定态铵和全氮含量。固定态铵含量采用Silva-Bremner法进行测定[28],即称取1.00 g过0.15 mm筛的土样,将其置于200 mL高型烧杯中,加入20 mL碱性次溴酸钾(KOBr)溶液,并用玻璃盖子盖住,摇匀后静置2 h。加蒸馏水60 mL,在电热板上暴沸5 min,冷却,静置6 h。倾去上层清液,以0.5 mol/L KCl溶液将土样洗入100 mL离心管中,土液体积共80 mL,振荡至土液混合均匀(约5 000~6 000次),离心(速度为1 000 r/min)共10 min。然后倾去上层清液,如此重复3次,将洗净的土样加入20 mL 5 mol/L HF-HCl溶液,振荡24 h(以释放矿物固定的NH4+),然后放入凯氏定氮蒸馏装置中蒸馏(加入15 mL10 mol/L KOH),用2%硼酸溶液吸收,以0.01 mol/L的H2SO4滴定。土壤全氮含量用元素分析仪(vario EL III,Elementar,德国)测定,每种粒径土壤的矿物组成和相对含量用X射线衍射法(D8 Advance,Bruker Biospin,德国)测定。
图1 样地位置示意图
表1 样地的基本信息
注:粒径组成数据用平均值±标准误表示。
Note: Particle size composition data are shown as mean ± standard error.
1.3 数据分析
采用Kolmogorov-Smirnov检验对全部数据进行正态分布检验,对不符合检验的数据进行对数和三角函数转换,提高其正态性。采用单因素方差分析和Duncan’s多重范围检验分析,比较不同样地固定态铵和全氮含量的差异;运用相同方法比较不同样地、不同粒径土壤固定态铵含量及其占全氮含量比值之间的差异。采用冗余分析(Redundancy Analysis, RDA)计算不同粒径、不同矿物对固定态铵含量的相对影响。采用非度量多维尺度(Nonmetric Multidimensional Scaling, NMDS)分析明确不同样地中粒径和矿物组成之间的差异是否显著。采用Mantel 检验分析粒径组成、矿物组成与固定态铵含量之间的相关性。以=0.05作为检验是否具有显著差异的阈值。所有统计分析利用R软件3.6.3(R Core Team 2019)完成。
2 结果与分析
2.1 土壤固定态铵和全氮含量
样地间差异分析结果表明,油蒿林地土壤固定态铵含量(23.03±1.88 mg/kg)显著高于裸沙地(16.63± 0.61 mg/kg)和沙柳林地(16.82±1.25 mg/kg)(< 0.05),裸沙地和沙柳林地间固定态铵含量差异不显著(图2a;> 0.05);油蒿林地土壤全氮含量(274.71±8.38 mg/kg)显著高于裸沙地(145.99±9.45 mg/kg)和沙柳林地(197.15± 6.74 mg/kg),且沙柳林地土壤全氮含量显著高于裸沙地(图2b;< 0.001)。
注:不同小写字母表示在0.05水平下差异显著。下同。
2.2 固定态铵占全氮含量的比例
总体来看,3种不同粒径土壤固定态铵占其全氮含量的比例有显著差异(表2;< 0.001)。在裸沙地和油蒿林地,粒径组成对固定态铵占全氮含量的比例有显著影响(< 0.05),而沙柳林地不同土壤粒径对其影响不显著(> 0.05)。裸沙地和油蒿林地中,细粒径(< 0.1 mm)和中粒径(0.1~0.25 mm)土壤固定态铵占全氮含量比例均显著高于粗粒径(> 0.25 mm)土壤。
表2 不同粒径土壤固定态铵占全氮含量的比例
注:在0.05水平下差异显著。
Note:is significant difference at 0.05 level.
2.3 土壤粒径组成对固定态铵含量的影响
NMDS和Adonis分析结果显示,3个样地间土壤粒径组成存在显著差异(图3a;<0.05)。细粒径土壤与固定态铵含量呈显著正相关(图3b)。3个样地中,不同粒径组成对固定态铵含量影响均显著(<0.001)。裸沙地中,细粒径土壤固定态铵含量(21.46±0.84 mg/kg)显著高于中粒径(17.43±0.73 mg/kg)和粗粒径土壤(12.27±0.76 mg/kg),中粒径土壤固定态铵含量显著高于粗粒径土壤(图3c)。沙柳林地中,细粒径土壤固定态铵含量(23.92±1.40 mg/kg)显著高于中粒径(17.02± 1.46 mg/kg)和粗粒径土壤(12.83±0.84 mg/kg),但中粒径和粗粒径土壤间固定态铵含量无显著差异(图3d)。油蒿林地中,固定态铵含量在不同粒径中显示的特点与裸沙地相同,细粒径、中粒径和粗粒径土壤固定态铵含量分别为(28.98±1.89)mg/kg,(22.74±2.49)mg/kg和(11.90± 0.76)mg/kg(图3e)。
注:NMDS为非度量多维尺度;RDA为冗余分析。下同。 Note: NMDS is nonmetric multidimensional scaling; RDA is redundancy analysis. The same below.
2.4 土壤矿物组成对固定态铵含量的影响
3个样地土壤矿物成分主要为石英(SiO2)、斜长石(Na[AlSi3O8]-Ca[Al2Si2O8])、正长石(K[AlSi3O8])、方解石(CaCO3)、钙长石(CaO.Al2O3.2SiO2)、硅酸铝钙(Ca2Al2(SiO3)5)和钠长石(Na2O·Al2O3·6SiO2)7种矿物。NMDS和Adonis分析结果显示,3个样地间矿物组成差异显著(图4a;<0.001),裸沙地中斜长石含量最高,沙柳林地中石英含量最高,油蒿林地中方解石和正长石含量最高(表3)。
此外,3个样地不同粒径土壤间矿物组成也存在明显差异。裸沙地和油蒿林地中,细粒径-中粒径间、粗粒径-中粒径间矿物组成差异显著(<0.05),但细粒径和粗粒径土壤之间矿物组成差异不显著(图4c和图4e;>0.05)。沙柳林地中,细粒径和中粒径土壤矿物组成差异显著,而细粒径-粗粒径间、中粒径-粗粒径间矿物组成无显著差异(图4d;>0.05)。Mantel Test分析结果显示,3个样地固定态铵含量与矿物组成之间无显著相关性(图4b和表4)。
图4 3个样地总体和各样地不同土壤粒径下矿物组成差异以及固定态铵含量与矿物组成的相关性
表3 3个样地土壤矿物组成
表4 3个样地土壤矿物组成与固定态铵含量的相关性
注:在0.05水平下差异显著。
Note:is significant difference at 0.05 level.
3 讨 论
研究区风沙土固定态铵含量平均为18.63 mg/kg,占土壤全氮含量的8.77%(图2a和表2)。以往研究显示,黄棕壤固定态铵含量为257 mg/kg,占全氮含量的27.5%;棕漠土固定态铵含量为159.8 mg/kg,占全氮含量的52.3%;栗钙土、灰钙土、棕钙土固定态铵含量为90 mg/kg,占全氮含量的14.2%[20]。固定态铵占全氮的份额在各类型土壤间差异很大[20]。与其他土壤类型相比,风沙土固定态铵含量明显较低,这可能与风沙土的母质来源和成土过程密切相关[20,29]。毛乌素沙地基质是以中生代侏罗纪与白垩纪的岩石为骨架,经过第三纪与第四纪水成作用为主的洪积与冲积过程形成的台地[30],岩石风化程度低,矿物类型以石英为主,其次是正长石和斜长石等,2:1型黏土矿物(蛭石、蒙脱石等)含量很少,这可能是造成风沙土中固定态铵含量较其他类型土壤低的原因。此外,固定态铵与土壤中的交换性铵以及其他形态的氮素保持着动态平衡[31-32],且其含量随土壤中交换性铵含量变化而改变。比如,在人工氮输入的情形下,土壤中铵离子浓度升高,部分铵离子会以固定态铵的形式储存在土壤晶格中,使土壤固定态铵含量增加[33-34]。然而,研究区土壤不进行施肥、耕作等人为活动,额外的氮素补充较其他土壤类型少,土壤中铵离子浓度也相对较低,能被固定在晶格中的铵离子非常有限,这可能也是风沙土固定态铵含量较低的原因。
风沙土固定态铵含量受粒径组成影响显著,粒径越细固定态铵含量越高,粒径越粗含量越低(图3)。Feigin等[29]、Paramasivam和Breitenbeck[36]发现,固定态铵含量与粘粒含量呈显著正相关。本研究结果与张崇玉[35]一致,这可能是由于细粒物质孔隙结构更小,吸附和交换铵离子的能力更强。另外,有研究显示,细粒土壤中细菌多样性要高于粗粒径土壤,因此有更高的养分周转效率[37],能提供更多的氮素,为铵的固定提供了更有利的条件。
以往的研究表明,固定态铵含量还与矿物组成之间存在一定的联系[38]。然而,对研究区风沙土的分析却发现,矿物组成与固定态铵含量之间没有显著关系(表4)。Allison等[39]和Said[40]发现蛭石、伊利石和蒙脱石在铵的固定中起着十分重要的作用,但是毛乌素沙地风沙土中矿物类型以石英为主,蛭石等2:1型黏土矿物很少,导致对固定态铵含量没有显著影响。
植被类型也是影响土壤固定态铵含量的重要因素。研究结果显示,油蒿林地固定态铵含量显著高于裸沙地和沙柳林地,这可能主要与不同植被条件下土壤中细粒径组分含量有关。在风沙区,植被一方面可以影响地表风沙过程,捕获风沙流中大量细粒物质,使得表层土壤中细粒物质增多[41];另一方面,植被通过根系活动、凋落物输入等过程,也有利于细粒物质的累积[42]。因此,油蒿和沙柳林地相比于裸沙地,土壤中细粒物质含量更高,固定态铵含量相应也较高。此外,植被还通过改变生物土壤结皮覆盖度间接影响土壤粒径组成,进而影响固定态铵含量。大量研究证实,生物土壤结皮具有固氮功能,能够增加表层土壤细粒物质含量[43-47]。研究区油蒿林地的生物土壤结皮覆盖度远高于沙柳林地[48],这可能是油蒿林地固定态铵含量较沙柳林地高的重要原因。除生物土壤结皮外,以往研究还发现,油蒿林地土壤微生物多样性、酶活性也较沙柳林地高[49],说明油蒿林地的养分循环和周转速率更高,这都为铵的固定提供了更好的条件[50-51]。尽管本文研究发现不同植被条件下矿物组成差异显著,但固定态铵含量与矿物组成无关,表明植被可能并不是通过改变土壤矿物组成来影响固定态铵含量。综合来看,研究区沙地植被主要通过改变土壤粒径组成而非矿物组成对固定态铵含量产生影响。
毛乌素沙地土壤固定态铵含量与细粒径土壤含量显著正相关,在今后固沙植物的选择上,应选择能有效增加土壤细粒物质含量的植物种。本文为认识荒漠化地区土壤肥力来源和氮素循环提供了一个新的视角,同时为评估固沙植被改良土壤的机理提供了新的解释。然而,沙地土壤固定态铵的形成机制、对土壤肥力的影响、不同类型植被对土壤固定态铵的影响机制等问题非常复杂,仍需要进一步地深入探讨。
4 结 论
毛乌素沙地风沙土固定态铵平均含量为18.63 mg/kg,占土壤总氮库的8.77%。土壤粒径组成对固定态铵含量影响显著,粒径越细固定态铵含量越高,粒径越粗含量越低;矿物组成与固定态铵含量之间无显著相关性;植被类型对固定态铵含量有显著影响,油蒿林地固定态铵含量(23.03 mg/kg)显著高于裸沙地(16.63 mg/kg)和沙柳林地(16.82 mg/kg)。毛乌素沙地风沙土固定态铵含量主要由土壤物理结构而非矿物化学组成决定,提高土壤细粒物质含量有利于土壤肥力的提升,对土地荒漠化治理具有十分重要的意义。
[1] Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368(1621): 1-27.
[2] Bai Y F, Wu J G, Naeem S, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16(1): 358-372.
[3] 吉艳芝,徐明杰,巨晓棠,等. 华北平原不同种植制度对粮食作物氮素利用和土壤氮库的影响[J]. 农业工程学报,2020,36(19):86-96.
Ji Yanzhi, Xu Mingjie, Ju Xiaotang, et al. Effects of different cropping systems on food crop nitrogen utilization and soil nitrogen pool in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 86-96. (in Chinese with English abstract)
[4] Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296.
[5] 王玉冰,孙毅寒,丁威,等.长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报,2020,44(1):22-32.
Wang Yubing, Sun Yihan, Ding Wei, et al. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe[J]. Chinese Journal Plant Ecology, 2020, 44(1): 22-32. (in Chinese with English abstract)
[6] Lebauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379.
[7] Luo Y Q, Jackson R B. Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling[J]. Ecology, 2006, 87(1): 3-4.
[8] Reich P B, Hobbie S E, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440(7086): 922-925.
[9] Menyailo O V, Lehmann J, Cravo M D, et al. Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon, Brazil[J]. Biology and Fertility of Soils, 2003, 38(1): 1-9.
[10] Zheng M, Zhou Z, Zhao P, et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation[J]. Global Change Biology, 2020, 26(11): 6203-6217.
[11] Dynarski K A, Houlton B Z. Nutrient limitation of terrestrial free-living nitrogen fixation[J]. New Phytologist, 2018, 217: 1050-1061.
[12] Fan K, Delgado-Baquerizo M, Guo X, et al. Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome, 2019, 7(1): 143.
[13] Houlton B Z, Morford S L, Dahlgren R A. Convergent evidence for widespread rock nitrogen sources in earth’s surface environment[J]. Science, 2018, 360(6384): 58-62.
[14] Yan T, Wang X Z, Zhao H T, et al. Effect of potassium and C/N ratios on conversion of NH+in soils[J]. Pedosphere, 2008, 18(4): 539-544.
[15] Gouveia G A, Eudoxie G D. Distribution of fertiliser N among fixed ammonium fractions as affected by moisture and fertiliser source and rate[J]. Biology and Fertility of Soils, 2007, 44(1): 9-18.
[16] Lu C, Zhang X, Chen X, et al. Fixation of labeled (15NH4)2SO4and its subsequent release in black soil of northeast China over consecutive crop cultivation[J]. Soil and Tillage Research, 2010, 106(2): 329-334.
[17] Mamo M, Taylor R W, Shuford J W. Ammonium fixation by soil and pure clay minerals[J]. Communications in Soil Science and Plant Analysis, 1993, 24(11/12): 1115-1126.
[18] 李成芳,曹凑贵,潘圣刚,等. 稻鸭共作生态系统稻田土壤固定态铵含量及有效性[J]. 生态学报,2008,28(6):2729-2737.
Li Chengfang, Cao Zougui, Pan Shenggang, et al. The dynamics and availability of soil fixed ammonium in rice-duck complex ecosystems[J]. Acta Ecology Sinica, 2008, 28(6): 2729-2737. (in Chinese with English abstract)
[19] 程励励,文启孝. 成都平原几种水稻土的固定态铵及其有效性[J]. 土壤,1999,31(3):132-135.
[20] 文启孝,程励励,陈碧云. 我国土壤中的固定态铵[J]. 土壤学报,2000,37(2):145-156.
Wen Qixiao, Cheng Lili, Chen Biyun. Fixed ammonium in soil of China[J]. Acta Pedologica Sinica, 2000, 37(2): 145-156. (in Chinese with English abstract)
[21] 廖继佩,林先贵,曹志洪,等. 土壤固定态铵的影响因素[J]. 土壤,2003,35(1):36-40.
Liao Jipei, Lin Xiangui, Cao Zhihong, et al. Factors affecting soil-fixed ammonium[J]. Soil, 2003, 35(1): 36-40. (in Chinese with English abstract)
[22] 李生秀,张兴昌. 土壤中非代换铵的行为: Ⅰ两种测定土壤非代换铵方法优劣的判别[J]. 西北农业大学学报,1991,19(1):7-12.
Li Shengxiu, Zhang Xingchang. The behaviour of non-exchangeable ammonium in soils: Ⅰ. Evaluation of two methods determining non-exchange ammonium in soils[J]. Acta Univ. Agric. Boreali-occidentalis, 1991, 19(1): 7-12. (in Chinese with English abstract)
[23] Nieder R, Benbi D K, Scherer H W. Fixation and defixation of ammonium in soils: A review[J]. Biology and Fertility of Soils, 2011, 47(1): 1-14.
[24] Nommik H. Ammonium fixation and other reactions involving a notic immobilization of mineral nitrogen in soil[J]. Agronomy, 1965, 10(2): 198-258.
[25] 焦立新,王圣瑞,金相灿,等. 长江中下游浅水湖泊沉积物固定态铵特征及影响因素[J]. 环境科学研究,2007,20(4):57-63.
Jiao Lixin, Wang Shengrui, Jin Xiangcan, et al. Characteristic of fixation smmonium and effecting factors on the sediments from shallow lakes in the middle and lower reaches of the Yangtze River[J]. Research of Environment Sciences, 2007, 20(4): 57-63. (in Chinese with English abstract)
[26] Liu J, Fa K, Zhang Y, et al. Abiotic CO2uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 2015, 42(14): 5779-5785.
[27] 朱鹤健,何宜庚.土壤地理学[M]. 北京:高等教育出版社,1992.
[28] Silva J A, Bremner J M. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium[J]. Soil Science Society of America Journal, 1966, 30(5): 587-594.
[29] Feigin A, Yaalon D H. Non‐exchangeable ammonium in soils of Israel and its relation to clay and parent materials[J]. European Journal of Soil Science, 1974, 25(3): 384-397.
[30] 张新时. 毛乌素沙地的生态背景及其草地建设的原则与优化模式[J]. 植物生态学报,1994,18(1):1-16.
Zhang Xinshi. Principles and optimal models for development of Mu Us Sandy Grassland[J]. Acta Phytoecologica Sinica, 1994, 18(1): 1-16. (in Chinese with English abstract)
[31] 朱兆良,文启孝. 中国土壤氮素[M]. 南京:江苏科学技术出版社,1992.
[32] 李生秀,田霄鸿,王喜庆,等. 土壤中非代换铵的行为Ⅱ.非代换铵含量与其它形态氮素的关系[J]. 西北农林科技大学学报:自然科学版,1991,19(4):18-24.
Li Shengxiu, Tian Xiaohong, Wang Xiqing, et al. The behaviour of non-exchangeable ammonium in soils Ⅱ. The relationship between non-exchangeable ammonium and other N forms[J]. Journal of Northwest A&F University: Natural Science Edition, 1991, 19(4): 18-24. (in Chinese with English abstract)
[33] Juang T C, Wang M K, Chen H J, et al. Ammonium fixation by surface soils and clays[J]. Soil Science, 2001, 166(5): 345-352.
[34] Liang B C, Mackenzie A F. Fertilization rates and clay fixed ammonium in two Quebec soils[J]. Plant and Soil, 1994, 163(1): 103-109.
[35] 张崇玉,李生秀. 土壤颗粒组成与固定态铵之间的关系[J].土壤学报,2004,41(4):649-654.
Zhang Chongyu, Li Shengxiu. Relationship between particle composition and fixed ammonium in soil[J]. Acta Pedologica Sinica, 2004, 41(4): 649-654. (in Chinese with English abstract)
[36] Paramasivam S, Breitenbeck G A. Distribution of nitrogen in soils of the southern Mississippi River Alluvial Plain[J]. Communications in Soil Science and Plant Analysis, 1994, 25(3): 247-267.
[37] Sessitsch A, Weilharter A, Gerzabek M H, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied and Environmental Microbiology, 2001, 67(9): 4215-4224.
[38] Sippola J, Erviö R, Eleveld R. The effects of simultaneous addition of ammonium and potassium on their fixation in some Finnish soils[J]. Physiologia Plantarum, 1973, 70(2): 259-266.
[39] Allison F E, Doetsch J H, Roller E M. Availability of fixed ammonium in soils containing different clay minerals[J]. Soil Science, 1953, 75(5): 361-382.
[40] Said M B. Ammonium fixation in the Sudan Gezira soils[J]. Plant and Soil, 1973, 38(1): 9-16.
[41] 高广磊,丁国栋,赵媛媛,等. 生物结皮发育对毛乌素沙地土壤粒度特征的影响[J]. 农业机械学报,2014,45(1):115-120.
Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of biological soil crusts on soil particle size characteristics in Mu Us Sandland[J]. Transaction of the Chinese Society for Agricultural Machinery, 2014, 45(1): 115-120. (in Chinese with English abstract)
[42] Gao Y, Dang P, Zhao Q X et al. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, Northwest China[J]. Land Degradation and Development, 2018, 29(4): 1031-1040.
[43] Belnap J. The world at your feet: Desert biological soil crusts[J]. Frontiers in Ecology and the Environment, 2003, 1(4): 181-189.
[44] 闫德仁,薛英英,赵春光. 沙漠地区生物土壤结皮层腐殖质特征[J]. 生态学杂志,2007,26(12):2017-2020.
Yan Deren, Xue Yingying, Zhao Chunguang. Humus feature in soil bio-crust area[J]. Chinese Journal of Ecology, 2007, 26(12): 2017-2020. (in Chinese with English abstract)
[45] 张元明,陈晋,王雪芹,等. 古尔班通古特沙漠生物结皮的分布特征[J]. 地理学报,2005,60(1):53-60.
Zhang Yuanming, Chen Jin, Wang Xueqin, et al. The distribution patterns of biological soil crust in Gurbantunggut Desert[J]. Acta Geographica Sinaca, 2005, 60(1): 53-60. (in Chinese with English abstract)
[46] 赵哈林,郭秩瑞,周瑞莲,等. 植被覆盖对科尔沁沙地土壤生物结皮及其下层土壤理化性质特性的影响[J]. 应用生态学报,2009,20(7):1657-1663.
Zhao Halin, Guo Yirui, Zhou Ruilian, et al. Effects of vegetation cover on physical and chemical properties of bio-crust and under-layer soil in Horqin Sand Land[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1657-1663. (in Chinese with English abstract)
[47] Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management[M]. New York: Springer-verlag, 2001.
[48] 刘利霞. 宁夏盐池沙地土壤结皮的理化性质及其局部环境影响[D]. 北京:北京林业大学,2008.
Liu Lixia. Physicochemical Characteristics of Soil Crust and Its Influences on Local Environments in Sandy Desert of Yanchi, Ningxia[D]. Beijing: Beijing Forestry University, 2008.
[49] Sun Y, Zhang Y, Feng W, et al. Effects of xeric shrubs on soil microbial communities in a desert in Northern China[J]. Plant and Soil, 2017, 414(1/2): 281-294.
[50] Xia Q, Rufty T, Shi W. Soil microbial diversity and composition: Links to soil texture and associated properties[J]. Soil Biology and Biochemistry, 2020, 149: 1-13.
[51] 段鹏鹏,张玉玲,丛耀辉,等. 氮肥与有机肥配施协调土壤固定态铵与可溶性氮的研究[J]. 植物营养与肥料学报,2016,22(6):1578-1585.
Duan Pengpeng, Zhang Yuling, Cong Yaohui, et al. Regulation of soil fixed ammonium and soluble N through combined application of N fertilizer and manure[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1578-1585. (in Chinese with English abstract)
Effects of particle size and mineral composition on fixed ammonium of aeolian sandy soil in the Mu Us Sandy Land
Liu Na1, She Weiwei1,2, Qin Shugao1,2, Qiao Yangui1, Liu Liang1, Zhang Yuqing1,2※
(1.,,,100083,; 2.,,100083,)
Fixed ammonium is commonly defined as the ammonium ion not replaced by neutral salts, particularly between the layers of 2:1 clay mineral. It is also an important component of soil nitrogen pool, and plays a significant role in plant growth. However, the content of fixed ammonium in aeolian sandy soil and its influencing factors are largely unexplored, which limit understanding of the formation of soil fertility and nitrogen cycle in sandy lands. In this study, soil fixed ammonium was determined in three sampling plots (bare sandy land,land, andland) in the Mu Us Sandy Land, and further to examine the effects of soil particle size and mineral composition on fixed ammonium. In June 2019, ten 5 m × 5 m subplots were randomly selected in each sampling plot. In each subplot, ten soil cores at 0~20 cm depths were randomly collected, and mixed to create one composite sample. All soil samples were air-dried and divided into three fractions (> 0.25 mm, 0.1-0.25 mm, < 0.1 mm). The contents of fixed ammonium in all soil fractions were measured by the Silva-Bremner method. Soil total nitrogen was analyzed using a vario EL III elemental analyzer (Elementar, Germany).The soil mineral composition was determined by the X-ray diffraction (D8 Advance, Bruker Biospin, Germany).The results showed that the average content of soil fixed ammonium in the research site was 18.63 mg/kg, accounting for 8.77% of the soil nitrogen pool, where the soil fixed ammonium and total nitrogen content were most distributed in theland (23.03 ± 1.88 mg/kg and 274.71 ± 8.38 mg/kg, respectively), followed by theland (16.82 ± 1.25 mg/kg and 197.15 ± 6.74 mg/kg, respectively), and the least in the bare sandy land (16.63 ± 0.61 mg/kg and 145.99 ± 9.45 mg/kg, respectively). The composition of soil particle significantly differed among three different plots, with more fine-textured soils inland than that inland and bare sandy land. In addition, the content of fine-textured soils inwas higher than that in bare sandy land. Soil particle composition was significantly correlated to fixed ammonium, indicating the finer the soil particle size, the higher the fixed ammonium content. Seven dominant minerals were found in the three sampling plots soil, including quartz, calcite, plagioclase, orthoclase, albite, anorthitic, and calcium aluminum silicate. Three sampling plots were characterized by different soil mineral composition. Specifically,land had the greatest content of calcite, and orthoclase;land had the greatest quartz content; and the bare sandy land showed the highest plagioclase content. The relationship between soil mineral composition and fixed ammonium was not significant. It infers that that soil fixed ammonium in the Mu Us Sandy Land largely depended on the soil physical composition rather than the mineral composition. The vegetation primarily affected soil fixed ammonium by changing soil particle composition, suggesting that the increase of soil fine-grained matter via vegetation rehabilitation can contribute to the content of fixed ammonium. The findings can offer a significant theoretical support to land desertification control, and further to increase the biological productivity.
vegetation; particle size; aeolian sandy soil; fixed ammonium; mineral composition; Mu Us Sandy Land
刘娜,佘维维,秦树高,等. 毛乌素沙地风沙土粒径和矿物组成对固定态铵含量的影响[J]. 农业工程学报,2020,36(23):131-138.doi:10.11975/j.issn.1002-6819.2020.23.016 http://www.tcsae.org
Liu Na, She Weiwei, Qin Shugao, et al. Effects of particle size and mineral composition on fixed ammonium of aeolian sandy soil in the Mu Us Sandy Land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 131-138. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.016 http://www.tcsae.org
2020-08-13
2020-12-03
国家重点研发计划课题(2016YFC0500905);中央高校基本科研业务费专项(2015ZCQ-SB-02)
刘娜,主要从事荒漠化防治研究。Email:crown_liuna@163.com
张宇清,教授,博士生导师,主要从事荒漠化防治和荒漠生态学研究。Email:zhangyq@bjfu.edu.cn
10.11975/j.issn.1002-6819.2020.23.016
S151.9+3
A
1002-6819(2020)-23-0131-08