APP下载

四元数矩阵重构鲁棒波束形成算法

2020-02-24朱向鹏闫锋刚

哈尔滨工业大学学报 2020年5期
关键词:失配干扰信号波束

张 雪,朱向鹏,刘 帅,闫锋刚,王 军

(1.哈尔滨工业大学(威海) 信息科学与工程学院,山东 威海 264209; 2.中国空间技术研究院西安分院,西安 710000)

极化敏感阵列的自适应波束形成技术能够同时利用极化信息和空域信息完成滤波,相比传统标量阵列的纯空域滤波具有更加优良的抗干扰能力,使其在重要的军事、民事等领域具有广泛的应用前景[1-2].四元数具有4个正交基,特别适用于极化敏感阵列的信号建模及信号处理,因此其在极化敏感阵列上得到了广泛的应用[3-4].文献[5]提出的四元数MVDR(Quaternion Minimum Variance Distortionless Response, Q-MVDR)算法在干扰噪声协方差矩阵(interference-plus-noise covariance matrix, IPNCM)及期望信号导向矢量精确已知时具备优越的性能.然而,在实际应用中,许多非理想因素不可忽视.如:由指向误差、阵元位置误差带来的期望信号导向矢量失配[6-8];精确的IPNCM难以获得,利用采样协方差矩阵代替,在期望信号较强时,会出现信号相消现象,引起算法性能急剧下降[9-10].因此,对基于四元数的鲁棒自适应波束形成算法(Robust Adaptive Beamforming, RAB)进行研究十分必要.

在RAB算法方面,文献[11-12]利用对角加载(Diagonal Loading, DL)技术改善了对导向矢量误差的敏感性,但是并没有准则来确定最优加载量.针对此问题,文献[13-14]提出的迭代RAB算法、基于收缩失配估计的RAB算法避免了加载量的求解,并提高了在导向矢量失配时算法的鲁棒性.但是,以上RAB算法都有一个共同的缺点:由于训练数据中包含期望信号成分,当期望信号较强时,算法性能下降.因此,文献[15]利用Capon空间功率谱估计器对与期望信号分离的区域进行积分重构得到了IPNCM,去除训练数据中的期望信号成分,在波束形成领域实现了有价值的创新,为RAB技术的发展提供了一种新思路.但是该算法忽略了干扰信号的功率,并且需要利用CVX工具包求解二次约束二次规划问题,不易实现.在该算法的基础上,文献[16-18]提出的改进算法利用斜投影、去除残余噪声等方法在一定程度上提高了重构IPNCM的精度,以及导向矢量失配时的鲁棒性,但在这两方面仍具有一定的改进空间.

综上,在标量阵列、强期望信号条件下,矩阵重构类方法极大地提升了波束形成算法的鲁棒性.但是在极化敏感阵列方面,已有研究成果尚未有效解决强期望信号和导向矢量失配情况下性能下降的问题.本文针对此问题,提出一种基于四元数矩阵重构的鲁棒波束形成算法,该算法利用四元数完成信号建模,将协方差矩阵重构方法扩展到四元数域,结合四元数信号子空间投影方法,完成了对极化敏感阵列最优权矢量的求解.仿真实验表明,在强期望信号和导向矢量失配时,本文算法表现出较好的鲁棒性.

1 四元数信号模型

1.1 四元数基础

将复数在四维空间上进行扩展,可以得到四元数,比较常用的是Hamilton四元数.其定义四元数q由4个分量组成,一个实部和3个虚部[19],可以表示成如下形式

q=a+ib+jc+kd.

式中i,j,k都是虚部单位,满足

i2=j2=k2=ijk=-1, ij=k, ji=-k,

ki=j, ik=-j, ik=i, kj=-i,

四元数具有如下性质:

一个四元数q可以表示成2个复数q1,q2相加的形式如:q=q1+iq2,其中q1=a+jc,q2=b+jd,且q1,q2唯一.

1.2 四元数信号模型

为了简化阐述,文中假设接收极化波为完全极化波,阵列工作在理想环境下.

极化敏感阵列由相互正交的M个电偶极子对构成,阵列结构如图1所示,整个阵列可以分为2个子阵,分别由沿x轴和y轴方向放置的电偶极子组成,接收来自x轴和y轴方向的电场分量.各个阵元沿y轴构成均匀线阵,阵元间距为d.

图1 交叉偶极子均匀线阵

根据偶极子方向,可将阵列分为垂直、水平偶极子两个子阵,这两个子阵上第l个信号的导向矢量可表示为

则两个子阵的输出x1(t)和x2(t)分别为

式中:n1(t)和n2(t)分别为两个子阵中与信号相统计独立的高斯白噪声矢量.

四元数具有4个正交基,极化敏感阵列的每个阵元有两个正交分量,整个阵列的输出可以表示成四元数的形式,保持了各分量之间固有的正交特性.四元数域极化敏感阵列的输出可表示为

x(t)=x1(t)+ix2(t)=

(1)

式中:a(θl,γl)≜ax,l+iay,l为第l个信号的四元数域导向矢量,n(t)≜n1(t)+in2(t)为四元数域噪声矢量.

在波束形成中,式(1)一般表示为

式中:a0为期望信号导向矢量,s0(t)为期望信号,al,(l=1,2,…L)为干扰信号导向矢量,sl(t),(l=1,2,…,L)为干扰信号.

四元数域的协方差矩阵R∈HM×M为

干扰噪声协方差矩阵Rj+n定义为

(2)

1.3 Q-MVDR波束形成算法

Q-MVDR算法的最优权矢量w∈HM×1可以依据最大输出信干噪比(max signal-to-interference-plus-noise ratio, MSINR)准则转化为如下问题求得

(3)

利用拉格朗日乘子法求解式(3),解得四元数域最优权矢量的表达式为

(4)

(5)

2 基于四元数矩阵重构的鲁棒波束形成算法

2.1 干扰噪声协方差矩阵重构

针对强期望信号时,MVDR算法出现性能下降并且会加重导向矢量失配的问题,文献[15]提出复数域标量阵列的重构IPNCM的方法,本文将其扩展到四元数域

(6)

(7)

第l个干扰信号的导向矢量位于Bs各列矢量bi张成的干扰子空间,即可用Bs各列线性表示

式中:∀αB∈RP×1为系数向量,R为实数集.

(8)

第l个干扰信号的导向矢量也可以用Es线性表示

式中∀αE∈R(L+1)×1为系数向量.

aL+1=PBPEaL.

当L趋近于∞时,aL收敛于真实的导向矢量,即:a∞=PBPEa∞.根据文献[20],a∞的求解问题可以等价为对矩阵PBPE中特征值为1的特征向量的求解问题,有

式中eigmax( )代表矩阵的最大特征值.矩阵PBPE的最大特征值为1.

得到

(9)

最后,利用Capon谱估计器得到第l个干扰信号的功率

(10)

(11)

(12)

2.2 四元数信号子空间投影

得到最优权矢量

(13)

综上,本文提出的基于四元数矩阵重构的鲁棒波束形成算法,具体步骤如下

步骤3:根据干扰信号个数,利用式(9)和(10)得到干扰信号的导向矢量和功率的估计值;

3 算法性能分析

定义四元数波束形成器信干噪比损失[20]为

(14)

将式(4)代入式(14)得到最优波束形成器的信干噪比损失为

最优波束形成器的输出SINR可以表示为

(15)

在强期望信号和导向矢量失配情况下,算法性能严重下降的原因有以下两种情况:

1)训练数据中不含期望信号时导向矢量失配的权矢量为

(16)

将式(16)代入Sout,得到

(17)

则信干噪比损失为

结合式(15)得

Smis=SCBFLoptLmis.

可见,此时由导向矢量失配引起的信干噪比损失与期望信号强度无关,当失配角较小时,Lmis接近为1.

2)训练数据中含有期望信号时导向矢量失配,信干噪比损失为

(18)

并且有

Smis+sp=SmisLsp=SCBFLoptLmisLsp.

由式(18)可知,此时的信干噪比损失与期望信号强度有关,期望信号越强,信干噪比损失越大,甚至会出现强期望信号时的输出SINR比弱期望信号时还要低的现象,这就是强期望信号引起性能下降的原因所在.此外,导向矢量失配对算法性能的影响比不含期望信号时大[21].

SProposed≈SoptLProposed≈Sopt.

因此,本文算法的输出SINR接近于最优值.

4 仿真分析

仿真条件:由8个偶极子构成的均匀线阵,阵元数M=8,阵元间距d=λ/2,采样快拍数K=200,期望信号参数为(θ0,γ0)=(0°,10°),导向矢量失配误差为2°,S=10 dB,干扰信号参数为(θ1,γ1)=(50°,20°),I=30 dB.

在以上仿真条件下,将本文算法(Proposed)与四元数域PCMR-Q-MVDR算法[17]、CCMR-Q-MVDR算法[15]、对角加载(DL-Q-MVDR)算法[11]、Q-MVDR算法[5]和最优(Optimal)算法进行对比分析,考察算法方向图、输出信干噪比等方面的性能.

4.1 强期望信号时不同算法方向图比较

本实验考察强期望信号情况下,不同算法的方向图对比,仿真结果如图2所示.

图2 强期望信号时方向图的对比

Fig.2 Comparison of beampatterns in strong desired signal case

由图2可知,DL-Q-MVDR和Q-MVDR算法出现期望信号相消的现象,即:期望信号方向产生了零陷;CCMR-Q-MVDR算法在期望信号方向出现较小的估计偏差;本文算法和PCMR-Q-MVDR算法都精确对准期望信号并具有较低的旁瓣.

4.2 输出信干噪比随输入信噪比的变化

本实验在导向矢量失配条件下,考察不同算法输出SINR随输入SNR的变化情况.仿真条件改变S=-10 dB~20 dB,进行500次蒙特卡洛独立实验,仿真结果如图4所示.

图3 强期望信号时干扰零陷深度的对比

Fig.3 Comparison of interference depth in strong desired signal case

图4 输出SINR与输入SNR的变化曲线

由图4可知,Q-MVDR算法在SNR很小时,性能已经出现下降;DL-Q-MVDR算法虽然一定程度上改善了算法的性能,但是当SNR>0 dB时,算法性能也明显下降;本文算法、PCMR-Q-MVDR和CCMR-Q-MVDR算法由于重构出IPNCM,输出SINR随着输入SNR线性增加.本文算法相比其他两种重构类算法,具有更高的输出SINR,并接近于最优值.

4.3 输出信干噪比与失配角度的关系

本实验在强期望信号条件下,对不同算法输出SINR与失配角度的关系进行仿真.仿真条件改变失配角度为-10°~10°,进行500次蒙特卡洛独立实验,仿真结果如图5所示.

由图5可知,Q-MVDR算法即使很小的失配角度,就会引起性能严重恶化;DL-Q-MVDR算法一定程度上提高了对失配角度的敏感性,但当失配角度大于2°时,算法性能严重下降;CCMR-Q-MVDR算法进一步提高了对失配角度的敏感性,但当失配角度大于5°时,性能也出现明显下降;本文算法和PCMR-Q-MVDR算法都对失配角度不敏感,但本文算法具有更高的输出SINR,当失配角度较大时,依旧较接近于最优值.

图5 期望信号失配时输出SINR与失配角度关系

Fig.5 Correlation between output SINR and mismatch angle in the case of desired signal steering vector mismatch

5 结 论

针对在强期望信号和导向矢量失配的情况下,Q-MVDR算法性能下降的问题,提出了一种基于四元数矩阵重构的鲁棒波束形成算法.该算法首先利用四元数矩阵重构方法得到IPNCM的精确估计;然后利用四元数特征空间投影对导向矢量失配误差进行修正.仿真结果表明,本文算法在强期望信号和导向矢量失配同时存在时,能够保证期望信号方向波束增益无损失的同时,实现对干扰的有效抑制;算法始终具有较高的输出SINR,有效地提高了算法的鲁棒性.

猜你喜欢

失配干扰信号波束
有源相控阵雷达均衡技术研究与实现
基于小波域滤波的电子通信信道恶意干扰信号分离方法
毫米波通信中的波束管理标准化现状和发展趋势
T2-FLAIR 失配征预测IDH 突变-无1p/19q 共缺失型胶质瘤的研究进展
基于DJS的射频噪声干扰信号产生方法及其特性分析
一款高性价比失配负载的设计与制作
基于共形超表面的波束聚焦研究
超波束技术在岸基光纤阵中的应用
基于粒子群算法的光纤通信干扰信号定位方法
基于特征分解的方位向多通道SAR相位失配校正方法