面向数字化工厂建设的数据应用研究
2020-02-14管益辉
管益辉
摘要:本文介绍了数字化工厂中数据采集应用的建设方案,从数字化工厂的基本条件和数据采集以及工厂信息化系统的功能分析开始,充分利用数字化工厂中生产过程数据,挖掘内涵,以指标评价、数据驱动为目标,提出数据应用的实施方案、存在的问题以及建议。
Abstract: This paper introduces the construction scheme of data acquisition and application in the digital factory. It starts from the analysis of the basic conditions and data acquisition of the digital factory, and also analyses the function of the information system. To make full use of the production process data in the digital factory and excavate the connotation, this paper puts forward the implementation scheme, existing problems and suggestions of data application with the target of index evaluation and data driven.
關键词:数字化工厂;数据驱动;数据应用
Key words: digital factory;data driven;data application
中图分类号:TP391.44 文献标识码:A 文章编号:1006-4311(2020)01-0200-04
0 引言
自2013年德国提出了“工业4.0”的概念后,以两化融合为特点的第四次工业革命的趋势也愈加明显。智能工厂的建设前提是数字化工厂中从顶层到底层的系统集成和数据贯通,将数字信息结合人工智能的算法,深度挖掘数据内涵,才能逐步形成智能化的应用。全面实现数字化是通向智能制造的必由之路,“数据”是智能化的基础,数据的应用关系到数字化工厂的质量、效率和效益,也是迈向智能制造的必经之路[1]。
1 数字化工厂数据应用架构
数字化工厂的基本特点是业务流与信息流的融合,一是从产品设计(产品数据管理系统TC)、资源配置(企业资源计划系统ERP)、制造执行(制造执行系统MES)及底层生产线的业务流全部实现数字化的格式实现和传递[2];二是从产品生产过程中生成并采集上来的各种数据可以回传归集,在管理平台上对数据进行分析,形成质量预警、管理问题的依据,用数据形成质量提升和管理改善的驱动力。以此为出发点,数字化工厂数据应用的架构为图1所示。
根据精益管理的“七零”项点,按照设备、安全、质量、交付和成本五大方面(S2QDC),将采集上来的过程数据进行综合分析,形成评价各产线、各区域的考核内容汇总形成逐级所需的信息进行展示和推送,在设计、生产、质量和管理不同层级,按人员角色、管理层级对数据进行利用,形成推动企业发展的动力。
2 数据应用方案
2.1 设计数据贯通
设计数据的贯通包含企业层级的信息化平台之间数据的互通,同时设计数据向生产线执行工位传递的数据能够自动识别,不需二次转化[3]。
2.1.1 企业信息化平台数据互通
企业制造环节的数据源头是以产品构型为基础设计形成的工艺设计,质检策划要基于工艺设计进行检验信息的策划。工艺设计和质检策划数据包含的工艺流程、物料、工艺文件、检验要求等信息,以此为依据向ERP、MES、WMS、QMS等系统传输一整套统一的数据,作为指导生产的数据,以此保证数据流上下传送时,同一数据的共享和利用。作为企业规划的整体信息平台,企业数据总线要将各系统连接起来。(图3)
2.1.2 生产线执行数据与企业信息平台的互通
生产线执行工位需要以工艺设计数据在企业信息化平台一次设计后,经过审核及版本管理,作为根本依据指导生产和制造过程,同时规范体系管理的执行。其中生产线与企业信息平台的数据贯通需按类梳理接口数据。(图4)
2.2 基础数据的作用
当工艺设计的文件、程序等下发到产线后,人员、质量、生产和设备等过程管理的数据就需要从制造底层的产线执行中采用数据采集与控制系统(SCADA)获取[4]。数据的采集可分为自动采集和人工手动采集,根据企业的装备水平、工位节拍配置来确定采集方式[5]。最终目的是要满足数字化信息的需求,从制造过程和管理角度来看以工位为最小作业单元收集的过程数据主要用于以下方面:
2.2.1 质量检验文件的填写
根据工艺设计进行的质检策划要求,其质量管控项点和工艺执行过程同步,在工位执行工艺要求时进行质量数据的采集,同时质量数据可以用于质量检验文件的填写,取消人工填写作业。
2.2.2 管理数据指标分析
为满足工艺、生产、质量、设备和人员等管理需要,生产过程采集的数据需转化成管理语言才能使用,单纯的数据无法表达管理内涵和暴露问题。在基础数据收集上来以后,必须进行管理逻辑的处理,形成指标数据,如设备利用率、工位节拍等。(图5)