APP下载

基于观点动力学的在线点评研究

2020-02-11林自展肖井华周金连

电子科技大学学报 2020年1期
关键词:观点阈值意见

林自展,肖井华,周金连,吴 晔*

(1.北京邮电大学理学院 北京 海淀区 100876;2.北京师范大学新闻传播学院 北京 海淀区 100875)

在互联网时代,每个人不仅是社会信息的消费者,同时也是信息的生产者和观点的传播者[1]。在线点评作为一种个体观点表达的方式,指用户或者消费者通过线上平台直接对商品或服务评分并发布评论。这种直接的观点表达,将作为一种反馈信息,为下一个潜在消费者的行为决策提供参考。因此研究点评平台中群体意见分布的观点动力学机制,既可以进一步了解个体线上点评的行为规律,也可以为商家保持良好口碑提供参考。

目前,关于个体在线点评观点动力学的研究主要采用多主体建模的方法对点评意见分布进行解释或预测。文献[2]认为个体在观影后发表影评时容易受到电影质量、其他用户评分以及自身评分习惯的影响,基于此建立了关于电影评分的理论模型,并使用豆瓣影片在线点评数据进行验证,该模型可以较好地预测影片评分的意见分布。与预测评分意见不同的是,文献[3]则通过建立连续观点的动力学模型,通过判断个体是否会选择发表评分,从而预测在线点评的人数发展趋势。文献[4]则是针对电子商务环境下,基于个体时间与精力的有限性、个人对他人观点的信任程度、发表评论的概率及现有的历史评论等影响因素,构建出在线点评意见演化动力学模型。通过仿真模拟实验的方式,分别讨论了上述的各个因素对最终意见群体演化结果的影响。

目前主流的观点动力学模型归为离散模型和连续观点模型两个大类。在离散模型中,个体的观点只有赞成和反对两种情况。Sznajd模型[5]、Majority rule模型[6]和Voter模型[7]是离散模型的典型代表。实际上个体的观点并不能简单地归结于0和1两种情况,在连续模型中,个体的观点值是一定范围内的连续数值,基于有界信任的Deffuant模型[8]和Hegselmann-Krause模型[9]是最具代表性的两个模型。这两个模型用[0,1]区间内的连续数值来表示个体的观点值,只有在观点差值小于阈值的情况下,两个个体之间才会发生意见交流,并互相产生影响。在Deffuant模型中每次选择两个个体进行观点交互,与Deffuant模型的不同点在于,HK模型中的个体会受到群体中所有满足观点差值小于阈值的其他个体的观点的影响,并以此来更新自己的观点值。目前,关于舆论动力学的研究主要是在传统的Deffuant模型和HK模型的基础上,从社会网络结构[10-15]、评论文本挖掘[16-17]、个体特征[18]等角度进行研究。

伴随着在线点评平台的快速发展,越来越多的学者基于观点动力学在社交网络的基础上研究用户行为特征以及舆论传播的演化过程。然而,在线点评行为与传统的舆情演化相比存在明显的差异,主要包括以下几个方面:1) 在传统的舆论研究中,人群中任意两个人都有可能发生观点交互并互相影响对方的观点。但在线点评中,通常只能看到前人的评论,而前人并不会受到即将发表的评论的影响。因此,在线点评下个体间的影响是基于时间顺序的单方面影响。2) 基于社交网络的舆论演化研究,是在复杂网络的基础上考虑节点多样性、连接多样性、网络结构复杂性等。而在线点评模式下是多个前人对后续评论者的单向影响,即单向网络结构。3) 社交网络下,个体间的交流可以发生在有人际关系连边的好友,也可能是发生在有共同好友的两个个体之间。而在在线点评平台上,通常是按照评论发表时间的先后顺序进行展示,只有近期的少部分评论会对用户产生影响。

本研究基于上述在线点评与传统舆论传播的差异性,对传统的HK模型进行部分针对性的修改,并探究在线点评中所蕴含的观点动力学机制。

1 数据来源

在线点评行为常见于淘宝、京东、当当等各大电商平台,其中大众点评是中国最大的在线点评平台之一。用户可以在大众点评平台上发布自己对商家的评论,同时他们也能够浏览其他用户的点评辅助消费决策。

本研究选取了大众点评平台上2012年12月至2015年1月用户的历史评论数据,共包括3.8万个商家,共330万条历史评分记录。从中筛选出评分数量超过500条的店铺,剩余1 610个商家,205万条历史评分数据。每一条评分数据由星级、口味、环境、服务组成,均是[10,20,30,40,50]分,以这4种评分的均值作为店铺的整体评分。极端的评论会影响实际数据的真实性和准确性,因此50分的极端评分在这里并不考虑,原因是:1)雇佣水军模拟正常消费者的评论,提升整体平均分,吸引更多的人到店消费是商家常用的手段[19];2)未发表评论系统默认打分为满分50;这两种情况不能反映真实的用户体验。

通过观察500条以上店铺的评分分布情况,可以将其归类为单峰模式和双峰模式两大类。单峰模式即店铺的评分呈现出单一意见群体,双峰模式则存在两个对立的意见群体。本文分别从这1 610家店铺中挑选了两种模式下具有代表性的3个不同店铺,实际的评分分布如图1所示。

2 模型构建

2.1 Hegselmann-Krause模型

传统HK模型是在Deffuant模型的基础上演化出的一种基于有界信任的连续动力学模型,目的是研究群体中个体观点的演化过程。假设在一个群体中,存在N个个体,用表示个体i在t时刻自身的观点值,同时在t时刻,个体i会在群体中与其他个体进行交流,发生观点间的交互,如果个体j与个体i的观点差值小于观点阈值d,即那么个体j的观点会对个体i的观点产生影响,反之则不会有影响。个体i在与其他个体发生观点交互后,其观点值的更新如下:

式中,收敛参数μi表示个体对其他个体观点值的信任程度;观点阈值d表示只有在观点阈值内的个体观点才会对个体i产生影响;权重表示个体j对个体i的影响程度,且

2.2 模型修正

在线点评观点传播的特点与HK模型并不完全相同,其传播过程如图2所示。基于在线点评模式观点传播的特点,本文在HK原始模型的理论基础上针对以下三个部分进行了调整,使得新模型能够适用于在线点评模式下的观点演化模式。

1) 在HK模型中,基于社会人际关系复杂网络,个体之间的观点交互只在有关系的个体间发生,即只有两个节点之间存在关系连边,且观点差值小于阈值才会发生两者间的观点交互。然而在在线点评中,用户之间的社会网络关系并不明显,个体间的观点交互是基于评论时间先后顺序的,只有后发表评论的人才能看到已有的评论。因此,本文将社会人际关系网络结构转变为基于时间先后顺序的单向网络结构。

2) 在线点评店铺中存在大量的历史评论,且网页上每次仅只会显示几十条评论,由于决策的时间有限,不能看完所有的历史评论,只有近期的评论数据会对用户观点产生直接的影响。假设最近的K条评论会对用户的观点有影响。

3) 不同个体之间的信任程度不一致。传统的HK模型通过产生一个随机数作为两个个体间的信任值。大众点评中,用户更倾向于相信近期的评论。在观点差小于阈值d的前提上,发表时间越近的评论对当前用户的评分所造成的影响程度越大。这里用表示第j条评论对第i条评论的影响程度。

综上所述,个体观点值的更新如式2所示,其中i表示当前新增的评论为评论序列的第i条,表示第i条评论的初始观点,服从[0,1]之间的均匀分布,μ表示收敛参数。

2.3 模型仿真

根据大众点评的实际情况,本文基于传统HK模型进行修正,提出了适用于在线点评模式中的新模型,并对比分析了每一个参数对最终仿真结果所造成的影响。

意见群体的形成与K值的大小紧密相关,如图3所示。当K值较小时,也就是用户阅读的评论数较少,即只有少部分评论会影响到用户的评分,K值越小说明用户受到其他用户的影响越小,那么用户之间就很难形成意见群体。随着K值的增大,越来越多的评论会影响到用户,那么用户就容易与周围其他用户的意见达成一致,最终形成了意见群体。从图中可以看到,当K值大于10时,最终的结果并不会随着影响用户的评论数量的增加而产生明显的差异。

观点差阈值d表示的是只有两个个体间的观点差值小于d,才会彼此互相影响。如图4所示,如果任意两个用户之间都无法对对方产生影响,即当d=0时,随着时间的推移,最终是评分区间内均匀分布的结果。当阈值d逐渐增大时,部分观点差较小的用户之间开始相互影响,且阈值d越大,两个用户之间越有可能会相互影响,向对方的意见靠近趋于一个中间值。此时会形成两个不同的意见群体,形成两种截然不同的对立意见。当d值足够大即d>0.5时,观点差异较大的用户之间也会相互影响,大量用户互相交流影响,最终形成一个统一的意见。

收敛参数μ表示个体受到他人观点的影响程度。如图5所示,μ值较小时用户坚信自己的观点是正确的,无论他人的观点与自身差异的大小,都不会轻易采纳他人的观点。随着μ值的增大,用户逐渐开始接受他人的观点。在受到周围其他用户的影响后,观点差异较小的用户之间达成统一意见,最终形成两种对立的意见群体。

以上3个仿真结果表明,个体参考评论数K、观点阈值d和收敛参数μ均会对在线点评的演化结果产生重要的影响。其中,最终形成意见群体个数是由观点阈值d的大小所决定的。本文在大众点评实际评分数据分布中观察到的单峰、双峰两种模式与最终的仿真结果一致。

3 结 束 语

以大众点评、淘宝、京东、豆瓣等为代表在线点评平台的兴起,为消费者提供了发表个人消费体验的平台,同时也使得其他后续的消费者能够参考他人的评论便于自身更好地做出消费决策。传统的舆论动力学模型在社会人际关系网络的基础上探究观点演化的内在机制。然而,在线点评平台上用户之间的社交关系十分单薄,用户之间通常不存在任何社交关系,无法构建出有效的社会人际关系网络,因此传统舆论动力学模型对于在线点评上的观点演化存在明显的缺陷。本文从以下两个方便针对HK模型进行修正:1) 将社交关系网络替换为以时间先后为顺序的多对一的中心网络结构;2) 将个体间的信任程度与发表评论的时间间隔因素结合。仿真结果表明,参考评论数量K、观点差阈值d以及收敛参数μ三者是影响最终意见群体演化结果的主要因素。后续的研究可以针对不同点评店铺的实际情况,更深入分析各个参数,进一步丰富模型。

猜你喜欢

观点阈值意见
评“小创”,送好礼
小波阈值去噪在深小孔钻削声发射信号处理中的应用
没有反对意见
评“小创”,送好礼
基于自适应阈值和连通域的隧道裂缝提取
观点
比值遥感蚀变信息提取及阈值确定(插图)
室内表面平均氡析出率阈值探讨
业内观点
新锐观点