用问题链提升学生的数学思维
2020-01-15丁玲玲
丁玲玲
【摘 要】 问题链是数学教学当中的一个重要渠道,通过问题链的引导性、探究性、递进性,有助于促进学生思维的发展,实现对学生创造思维、逻辑思维、发散思维等方面的培养,且将数学知识理论直接转化为系统性、层次性的数学知识,引导学生思维发展,促进学生数学素养的提升。本文主要对于用问题链提升学生的数学思维展开分析。
【关键词】 小学数学;思维培养;问题链
数学问题可以说是学生展开深入学习的基础和核心,当学生对于所学习的知识内容有了一定的好奇之后,也就会出现问题,而对于问题的深入思考,也就会促进学生思维的发展,使用数学语言展开逻辑化的表达。在实际教学过程当中,教师应该针对学生数学学习当中可能出现的困惑将数学知识转化成为系统性的问题,促进学生思维的发展。
一、 引导性问题链催动学生思维
引导性问题链可以帮助教师更为顺利地展开课堂教学,实现数学知识教学过程当中的有效衔接,引导学生更为强烈的学习欲望,这类问题链对于促进学生思维的散发而言具有重要作用。在具体的应用当中,教师可以通过结合实际生活和学生认知的相关问题,使问题链的设计使基于学生的实际生活背景之上,从而在营造更加轻松愉悦氛围的同时,激发学生对知识的学习欲望。
例如在“平移、旋转和轴对称”这部分内容的教学过程当中,教师可以设计下列问题链,引导学生思考:组织学生观察钟面,思考下列问题:钟表的秒针做着什么运动?分针、秒针运动过程的共同点是什么?在生活中还有哪些类似现象?使用数学语言描述这类现象……
以上问题链的设计,就是基于核心知识点的基础之上逐步启发学生思维,设计更是贴近学生的实际生活。学生通过对钟表的观察,感受分针、秒针的运动方式,由此联想到生活中物体的旋转就是围绕了某个定点且沿着某个方向展开的。这类问题链的设计能够帮助学生更为深刻的理解所学习的数学知识,且帮助学生积累生活当中的感知经验,并促进学生观察能力、总结归纳能力的优化。
二、 探究性问题链培养学生的創造思维
探究性问题链是为了促进学生自主学习、思考数学问题展开的,这类问题的设计目的在于发现学生探索精神,具有一定的挑战性,这类问题链的设计能够构建更为高效的数学课堂,促进学生对于数学问题加以个性化思考,且能够培养学生创造能力探索性问题链的设计,要注重问题的梯度和逻辑结构,使学生在思考的过程当中感受到更深层次的思维和情感体验,实现层次化知识的构建,且掌握数学知识学习方法。
例如在“角的初步认识”一课时内容的教学过程当中,在学生具备了一定的知识基础之后,则引导学生通过量角器绘制出指定度数的角,教师可以提出下述核心问题:如果不借助量角器,大家能够绘制出指定度数的角吗?促进学生思维的发散性,紧接着,教师可以通过三角板来向学生提出下列问题:同学们知道三角尺各个角的度数吗?直角三角尺可以画出哪些特殊的角呢?怎样才能画这些角呢?如果按照由小大大排列,这些角都具有什么特点?
开放性问题的设计能够引导学生展开深入的思考,并通过教师的点化,帮助学生在数学知识理解的基础之上实现再创造,改变传统的灌输性教学模式,促进学生创造思维的提升。
三、 递进性问题链提高学生的逻辑思维
递进性问题链,基于数学知识之间的联系,采用正向或逆向思维设计由易到难的问题链,不同问题之间应该具备较强的层次性和关联性,以达到对学生思维深入的层次递进,该类问题链设计主要是通结论性问题转为原因性问题,引导学生掌握问题的解决方法和思维,达到深化学生数学思维的目的。
例如在“正比例和反比例”的教学过程当中,为了巩固学生所学习的知识,促进学生思维的表达,教师可以借助下述习题引出递进式问题链展开教学,如下:
教师则可以设计如下问题链:该表格当中正方形地砖边长的变化与所需块数的变化之间有什么联系?这种联系的背后代表着什么?该问题当中有哪种直接相关联的量,不变的量,分别是什么?如何表示出着两者之间的关系?生活中还有哪些这类例子?围绕这类逻辑性相对十分强的问题链引导学生展开交流沟讨论,且启发学生逐步分析出其中所隐蔽数量关系,例如相关联的是哪种量?之间的关系是怎样的?使学生对于正方比例的概念及含义有更深层次的掌握。整个过程当中,通过推理和模型化,学生逐渐感受到更为深入的数学思想。
实际教学中,通过问题链的设计,有利于促进学生对于数学概念规律更深层次的思考,进而发展学生思维,使学生养成善于思考、乐于思考的习惯,并在这个过程当中提出更加深入、富有挑战性的问题,促进学生在学习过程当中得到思维的碰撞。本文主要从三个方面对此展开了深入分析,可供相关人士参考。
【参考文献】
[1]朱建东.小议小学生数学能动思维素养的培养[J].科普童话,2015(45).
[2]贺芳芳.让学生在不断感知中提高空间思维素养[J].安徽教育科研,2020(16).
[3]郑有为.构建思品助学课堂,涵育学生思维素养[J].家庭生活指南,2018(12).