安徽高家塝钨钼矿床花岗闪长质侵入岩岩浆起源和演化及其对成矿能力的约束 *
2019-12-27傅仲阳徐晓春何俊白茹玉杜建国谢巧勤
傅仲阳 徐晓春 何俊,2 白茹玉, 杜建国 谢巧勤
1. 合肥工业大学资源与环境工程学院,合肥 2300092. 中国科学技术大学地球和空间科学学院,合肥 2300263. 安徽省地质调查院,合肥 230001
安徽高家塝钨钼矿床是近年来在江南过渡带北端新发现的一个大型斑岩-矽卡岩型矿床。江南过渡带是指江南隆起带北部、江南深断裂与高坦-周王断裂之间的北东向长条状区域,为长江中下游成矿带的南外带(常印佛等,1991;唐永成等,1998),地理上隶属安徽皖南地区,大地构造上处于下扬子坳陷与江南隆起的交接过渡部位,其北与长江中下游铜铁硫金成矿带相邻,南与皖南钨钼成矿带相接(图1)。江南过渡带在晚侏罗世至早白垩世时期爆发了大规模岩浆作用和成矿作用,不仅形成了大型花岗质侵入岩体或岩基,而且形成了一系列大、中型钨钼矿床及众多的铜-金-钼-铅-锌等多金属矿床,成岩和成矿特点具有其南北两侧成矿带过渡和复合的特征(常印佛等,1991;徐晓春等,2014;Zhouetal., 2015;聂张星等,2016;杨晓勇等,2016;张达玉等,2017;周涛发等,2017;傅仲阳等,2018)。这也使江南过渡带成为了安徽省又一个相对独立而又有特色的金属成矿区。
图1 江南过渡带及其邻区岩浆岩和矿床分布图(据徐晓春等,2014修改)成矿带划分:I-长江中下游铜铁硫金成矿带;II-江南过渡带;III-皖南钨钼成矿带. 断裂:F1-长江深断裂;F2-周王断裂;F3-高坦断裂;F4-江南深断裂;F5-东至断裂;F6-葛公镇断裂;F7-港口湖-曹村断裂. 矿床:(1)高家塝钨钼矿床;(2)狮金山铜钼多金属矿床;(3)百丈岩钨钼矿床;(4)鸡头山钨钼矿床;(5)安子山铜钼矿床;(6)铜矿里铜钼矿床;(7)桂林郑-黄山岭钼铅锌矿床;(8)马头铜钼矿床;(9)大石门铅锌矿床;(10) 宝树尖铜多金属矿床;(11)查册桥金矿床;(12)兆吉口铅锌矿床Fig.1 Simplified map of magmatic rocks and ore deposits in the Jiangnan Transitional Belt and its adjacent areas (modified after Xu et al., 2014)Metallogenic belt: I-the Middle-Lower Yangtze River Metallogenic Belt; II-the Jiangnan Transitional Belt; III-the South Anhui Province W-Mo Metallogenic Belt. Fault: F1-the Yangtze River deep fault; F2-Zhouwang fault; F3-Gaotan fault; F4-the Jiangnan deep fault; F5-Dongzhi fault; F6-Gegongzhen fault; F7-Gangkouhu-Caocun fault. Deposits: (1) Gaojiabang W-Mo deposit; (2) Shijinshan Cu-Mo polymetallic deposit; (3) Baizhangyan W-Mo deposit; (4) Jitoushan W-Mo deposit; (5) Anzishan Cu-Mo deposit; (6) Tongkuangli Cu-Mo deposit; (7) Guilinzheng-Huangshanling Pb-Zn deposit; (8) Matou Cu-Mo deposit; (9) Dashimeng Pb-Zn deposit; (10) Baoshujian Cu polymetallic deposit; (11) Chaceqiao Au deposit; (12) Zhaojikou Pb-Zn deposit
包括江南过渡带和皖南钨钼成矿带的皖南地区的大规模岩浆作用主要发生于燕山晚期,根据岩浆岩同位素地质年龄可分为早、晚两个阶段:早阶段岩浆岩同位素地质年龄介于150~136Ma之间,主要为花岗闪长(斑)岩、二长花岗岩、花岗(斑)岩;晚阶段介于136~120Ma之间,大多为正长花岗岩、花岗斑岩等(Wuetal., 2012;Songetal., 2014;Yanetal., 2017)。值得注意的是,已有地质学和年代学研究表明包括江南过渡带在内的皖南地区钨钼多金属成矿作用多与燕山晚期早阶段岩浆活动密切相关,与成矿相关的岩体多为岩株或岩基附近呈岩枝或岩瘤状产出的小型斑岩侵入体,出露面积多为0.3~1km2左右(周翔等,2012;Songetal., 2014;谢建成等,2016;Yanetal., 2017;Zhangetal., 2017;张达玉等,2017),而岩株或岩基状大型岩体反而不成矿或成矿作用相对较弱,有时这些大型岩体边部发育钨钼多金属矿点或矿化点,但规模普遍不大,工业价值十分有限。近几十年来,前人的研究大多集焦于皖南地区广泛出露的大型岩体的成因(Chenetal., 1985;邢凤鸣等,1991; 邢凤鸣和徐祥,1993;陈江峰等,1993;Xueetal., 2009; Xuetal., 2010;Wuetal., 2012;Songetal., 2014;谢建成等,2016;Xieetal., 2017;Yanetal., 2017;Zhangetal., 2018),或聚焦于单个小型赋矿斑岩体的成因(Songetal., 2012, 2013;Zhuetal., 2014;Lietal., 2015, 2017;Guetal., 2018),但对赋矿小型斑岩体与无矿(或弱矿化)大型岩体的地质和地球化学特征对比及其对成矿能力的制约机制却鲜有研究。基于此,本文以高家塝钨钼矿床赋矿花岗闪长斑岩体与无矿花岗闪长岩体为研究对象,开展深入的地质和地球化学研究,探讨其岩浆起源和成岩机制及岩浆侵位结晶时的物理化学条件,揭示制约两者成矿能力差异的因素。
1 区域地质和矿床地质
1.1 区域地质
图2 高家塝钨钼矿床区域地质图(a)和36号勘探线剖面图(b)(据Zhang et al., 2017修改)1-第四系;2-二叠系下统孤峰组;3-石炭系中统黄龙组;4-泥盆系上统五通组;5-志留系下统高家边组;6-寒武系上统团山组;7-寒武系中统杨柳岗组;8-寒武系下统黄柏岭组;9-矽卡岩;10-花岗斑岩;11-花岗闪长岩;12-花岗闪长斑岩;13-钨矿体;14-钼矿体;15-断层;16-钻孔;17-勘探线Fig.2 Simplified geological map of the Gaojiabang W-Mo deposits (a) and cross section of No.36 exploration line (b) (modified after Zhang et al., 2017)1-Quaternary; 2-Lower Permian Gufeng Fm.; 3-Middle Carboniferous Huanglong Fm.; 4-Upper Devonian Wutong Fm.; 5-Lower Silurian Gaojiabian Fm.; 6-Upper Cambrian Tuanshan Fm.; 7-Middle Cambrian Yangliugang Fm.; 8-Lower Cambrian Huangbailing Fm.; 9-skarn; 10-granite porphyry; 11-granodiorite; 12-granodiorite-porphyry; 13-W orebody; 14-Mo orebody; 15-fault; 16-drill holes; 17-exploration line
安徽高家塝钨钼矿床位于扬子陆块北缘、江南过渡带北端,北与长江中下游铜铁硫金成矿带铜陵矿集区相望,南与江南隆起的皖南钨钼成矿带相邻。在区域航磁和重力异常所反映的莫霍面等深线图上,矿床所处的江南过渡带位于由幔隆向幔坳过渡的坡度带上(唐永成等,1998)。区域地层出露较全,除三叠系中、上统和白垩系下统外,自寒武系至第四系地层均有出露。区域褶皱总体呈北东向展布,受多期构造作用叠加的影响褶皱轴面弯曲、枢纽起伏。区域断裂构造发育,北东向的高坦断裂、江南深断裂与北北东向的东至断裂、葛公镇断裂、港口湖-曹村断裂以及近东西向的周王断裂相互交切,构成菱形断裂构造格局(图1)。区域燕山期岩浆岩分布广泛,浅成或中深成侵位。浅成侵位者常呈岩枝、岩瘤、岩脉等形式产出,单个岩体出露面积较小,岩性以花岗闪长(斑)岩、花岗斑岩等为主,这类小型斑岩体与钨钼多金属成矿作用关系密切,既产出类似于皖南及华南地区的钨钼矿床,如高家塝钨钼矿床(蒋其胜等,2009;Zhangetal., 2017)、鸡头山钨钼矿床(Songetal., 2012)、百丈岩钨钼矿床(Songetal., 2013;Lietal., 2015),又产有类似于长江中下游成矿带的铜-金-钼-铅-锌等多金属矿床,如桂林郑-黄山岭钼铅锌矿床(陈雪锋等,2017)、马头铜钼矿床(Zhuetal., 2014;Lietal., 2017)、兆吉口铅锌矿床(徐晓春等,2014;傅仲阳等,2018)、查册桥金矿床(聂张星等,2016)、铜矿里铜钼矿床、安子山铜钼矿床(Guetal., 2018)以及宝树尖铜多金属矿床(古黄玲,2017)等(图1)。中深成侵位者则常以岩株或岩基形式的大型岩体产出,出露面积大,岩性主要为花岗闪长岩、二长花岗岩、花岗岩等,如青阳-九华岩基、谭山岩体等,它们一般不成矿或成矿作用相对较弱,目前尚未发现规模较大的矿床。
1.2 矿床地质
高家塝钨钼矿床位于青阳-九华岩基的北缘(图1),已探明钨金属量超过6.2万吨,平均品位0.367%,是安徽省目前已探明的规模最大的钨矿床(蒋其胜等,2009),同时伴生钼金属量0.54万吨。矿区地层除奥陶系缺失外,从寒武系下统黄柏岭组到二叠系栖霞组均有出露,岩性以砂岩、泥岩、页岩、灰岩为主,局部为第四系覆盖。矿区褶皱和断裂构造发育:褶皱构造主要为北东向的高家塝背斜和阮家湾向斜,轴面倾向南东;断裂构造主要由一系列北东向和近东西向断裂组成,其次为北西向和近南北向,其中近南北向断裂及次一级的纵向断裂是本矿床控岩控矿的主要构造。矿区岩浆岩发育,主要出露在矿区西部和南部,岩性为花岗闪长岩和花岗闪长斑岩,它们是青阳-九华花岗岩基的一部分。其中,花岗闪长岩体自西、南两个方向侵位于黄柏岭组地层,并呈弧状出露(图2a、图3a-c;Zhangetal., 2017);花岗闪长斑岩体则呈岩枝状或岩脉状沿黄柏岭组地层顺层侵入,出露面积不足0.5km2,钻孔揭露岩脉在深部合并、膨大,与矿化密切相关(图2b、图3d-e)。矿区局部有辉绿玢岩和石英闪长玢岩等岩脉穿切岩体和地层。矿床钨钼矿体主要呈似层状赋存于寒武系黄柏岭组中段矽卡岩带中,其次产于花岗闪长斑岩与黄柏岭组中段接触带以及花岗闪长斑岩体内,花岗闪长岩体中未见矿化(图2b)。矿石类型主要为含钨(钼)矽卡岩型(图3f),其次为含钼(钨)花岗闪长斑岩型(图3g, h)和含钨钼角岩型,在矽卡岩中见大量脉状或浸染状分布的磁黄铁矿(图3i)。矿石矿物主要为白钨矿、辉钼矿、磁黄铁矿,次为黄铁矿、黄铜矿、闪锌矿等,脉石矿物为石榴子石、辉石、石英、方解石等。矿石结构主要为自形-半自形粒状结构、他形粒状结构、叶片状结构、交代结构、填隙结构等,矿石构造主要为脉状、细脉状和细粒浸染状,白钨矿多呈浸染状、星散状、斑点状、团块状或细脉状产于矽卡岩中。
图3 高家塝矿区花岗闪长质岩石和典型矿石岩相学照片(a)花岗闪长岩体及暗色闪长质包体;(b、c)花岗闪长岩,中-粗粒结构,主要由半自形-他形斜长石、钾长石、石英以及少量角闪石和黑云母组成;(d、e)花岗闪长斑岩,斑状结构,斑晶由石英、斜长石、钾长石以及少量角闪石和黑云母组成,基质为长英质,呈微粒-细粒结构;(f)矽卡岩型白钨矿矿石,白钨矿呈细粒浸染状嵌布于石榴子石粒间;(g)斑岩型钨钼矿石,白钨矿和辉钼矿分别呈浸染状、细脉状分布;(h)斑岩型钼矿石,辉钼矿呈细脉浸染状分布于脉石矿物层间或粒间;(i)矽卡岩型磁黄铁矿矿石,磁黄铁矿呈脉状切穿矽卡岩. Qtz-石英;Pl-斜长石;Kfs-钾长石;Amp-角闪石;Bt-黑云母;Chl-绿泥石;Grt-石榴子石;Di-辉石;Sch-白钨矿;Mo-辉钼矿;Po-磁黄铁矿Fig.3 Petrographic characteristics of two types of granodioritic rocks and representative ore types from the Gaojiabang W-Mo deposit(a) granodiorite and its dioritic enclave; (b, c) granodiorite with medium-coarse grained texture; (d, e) granodiorite-porphyry with porphyritic texture; (f) W-bearing skarn type ore, the scheelite appears as disseminated fine-grained and embeds in the garnet between the grains; (g) W-Mo-bearing porphyry type ore, the scheelite and molybdenite occur as dissemination and veinlet respectively; (h) Mo-bearing porphyry type ore, the molybdenite are dominantly veinlet-disseminated; (i) Po-bearing skarn type ore, pyrrhotite cuts through skarn in a vein. Qtz-quartz; Pl-plagioclase; Kfs-potassium feldspar; Amp-amphibole; Bt-biotite; Chl-chlorite; Grt-garnet; Di-diopside; Sch-scheelite; Mo-molybdenite; Po-pyrrhotite
2 样品特征及分析方法
2.1 样品特征
花岗闪长斑岩和花岗闪长岩样品各9件,分别采自高家塝钨钼矿床地表露头和钻孔中。
花岗闪长斑岩样品呈灰白-青灰色,具斑状结构,块状构造或似片麻状构造(图3d, e)。斑晶约占70%,主要为斜长石(40%)、石英(15%)、钾长石(10%)以及少量角闪石(3%)和黑云母(2%),均呈半自形-他形粒状结构,大小0.5~3mm左右。斜长石斑晶呈厚板状,常见聚片双晶和环带结构,个别发育卡-钠复合双晶,表面发生绢云母化,常沿斜长石晶体裂隙和双晶纹分布,或在其内部呈星点状分布。石英斑晶多晶化明显,常见波状消光。钾长石斑晶呈板柱状,常具简单双晶和卡斯巴双晶,局部发育泥化而致其表面浑浊不清。角闪石斑晶呈半自形柱状,局部黑云母化、绿泥石化,并析出榍石;黑云母斑晶解理弯曲,膝折发育,可见绿泥石化并析出榍石。基质约占70%,主要为长英质,由微粒-细粒石英(10%)、斜长石(10%)、钾长石(5%)和少量暗色矿物(5%)角闪石、黑云母等组成。副矿物包括榍石、锆石、磷灰石、绿帘石、钛铁矿等。岩石局部呈片麻状,暗色矿物角闪石和黑云母等定向排列,石英有时具拔丝构造,可能反映其受后期岩体侵位时的热动力影响。岩石中常见硅化,表现为细粒石英围绕斑晶矿物生长或石英斑晶的多晶化,有时见方解石呈细脉状充填于斜长石和钾长石裂理缝中以及矿物颗粒间。
图4 高家塝矿床花岗闪长斑岩(366-413、366-605)和花岗闪长岩(QJ01-3、QJ08-1)部分锆石阴极发光图像Fig.4 Representative zircons cathodoluminescence (CL) images for the granodiorite-porphyry and granodiorite from the Gaojiabang W-Mo deposit
图5 高家塝矿床花岗闪长斑岩(366-413、366-605)和花岗闪长岩(QJ01-3、QJ08-1)锆石U-Pb谐和图Fig.5 Zircons U-Pb concordia plots for the granodiorite-porphyry and granodiorite from the Gaojiabang W-Mo deposit
花岗闪长岩样品呈青灰-浅肉红色,具中-粗粒结构,致密块状构造(图3b, c)。主要由斜长石(55%)、石英(20%)、钾长石(20%)以及少量角闪石(3%)、黑云母(2%)组成。斜长石和钾长石粒径一般2~6mm,斜长石呈自形-半自形柱粒状,常发育聚片双晶和环带结构,个别发育卡-钠复合双晶,局部发生绢云母化;钾长石呈他形-半自形板状-粒状,发育简单双晶,个别发育卡斯巴双晶,具包含结构;石英呈他形粒状结构充填于斜长石与钾长石之间。角闪石呈半自形-自形长柱状,大小0.5~2mm,发育简单双晶,具典型的角闪石式解理,常发生绿泥石化、黑云母化;黑云母呈半自形-他形板状,大小0.5~2mm,绿泥石化较强。副矿物包括榍石、锆石、磷灰石、绿帘石、磁铁矿等。
2.2 分析方法
单矿物锆石分选由河北省地质测绘院完成,将5~10kg原岩样品粉碎,再通过常规重选和电磁选后在双目镜下挑选锆石。锆石制靶和阴极发光(CL)照相在重庆宇劲科技公司进行。将锆石颗粒粘在双面胶上并灌入环氧树脂,待其冷却凝固后打磨抛光使其露出锆石表面,再进行锆石CL图像采集。LA-ICP-MS 锆石U-Pb定年及微量元素分析在合肥工业大学资源与环境工程学院质谱实验室完成,测试参数和详细分析方法参见文献(Liuetal., 2010),并使用ICP-MS DataCal软件进行实验数据处理(Liuetal., 2010),ISOPLOT软件进行年龄计算。
电子探针成分分析由合肥工业大学资源与环境工程学院电子探针实验室完成,仪器型号为JXA-8230,测试条件为:加速电压20kV,电流20nA,束斑直径为1μm,分析精度为0.01%。
全岩主量、微量以及稀土元素分析由广州澳实矿物实验室完成。主量元素分析采用X射线荧光熔片法;微量和稀土元素分析采用HF+HNO3密封溶解,加入Rh内标溶液后转化为 1% HNO3介质,以PE Elan6000型ICP-MS测定。具体操作方法和原理参见文献(Qietal., 2000)。
全岩Rb-Sr、Sm-Nd同位素分析由中国科学技术大学放射性成因同位素地球化学实验室完成,分析仪器为MAT-262热电离质谱计。采用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219分别对 Sr和Nd同位素比值标准化,用瑞利定律进行同位素质量分馏校正。详细同位素分析流程参见文献(Chenetal., 2000),实验数据采用ISOPLOT软件进行计算。
3 分析结果
3.1 锆石特征及U-Pb年龄
花岗闪长斑岩(366-413和366-605)的锆石呈无色-淡黄色,透明-半透明,大多呈自形长柱状或短柱状,长度为50~250μm,长宽比为1:1~4:1。阴极发光(CL)图像显示锆石形貌较为复杂,明暗变化较大,大多存在继承锆石核,具有核-边结构;也有单独的继承锆石颗粒存在,呈自形长柱状或近圆状、椭圆状,熔蚀现象明显,表面具熔蚀坑。锆石大多具有清晰的岩浆震荡韵律环带,属典型的岩浆成因锆石(图4)。锆石U-Pb同位素分析结果见表1,结果显示,样品366-413和366-605中的锆石232Th含量分别为63.5×10-6~319×10-6和54.1×10-6~327×10-6,238U含量分别为316×10-6~698×10-6和378×10-6~676×10-6,Th/U比值分别为0.20~0.51和0.14~0.48,显示出较为一致的变化范围。锆石表面年龄跨度较大,明显具多组年龄,但大多集中于139~150Ma之间,且集中于谐和曲线上(图5)。样品366-413和366-605中的锆石206Pb/238U加权平均年龄分别为145.1±2.1Ma和144.9±2.2Ma,谐和年龄分别为144.9±2.5Ma和143.8±2.8Ma,它们在误差范围内一致,代表了花岗闪长斑岩的成岩年龄,成岩时代为早白垩世(燕山晚期早阶段)。同时,2个样品还有686.3±21.3~811.0±22.8Ma(4个点)、1008.1±26.6~1159.2±29.6Ma(11个点)和1929.2±45.8~2451.5±58.3Ma(7个点)三组锆石年龄,分别代表新元古代、中元古代和古元古代的继承锆石年龄(表1)。
花岗闪长岩(QJ01-3、QJ08-1)的锆石呈无色-淡黄色,透明-半透明,自形长柱状或短柱状。锆石颗粒长100~350μm,长宽比2:1~3:1,阴极发光图像图像显示锆石形貌简单,个别锆石存在继承锆石核。锆石多具有清晰的岩浆震荡韵律环带,属典型的岩浆成因锆石(图4)。锆石U-Pb同位素分析结果见表1。结果显示,样品QJ01-3和QJ08-1中的锆石232Th含量分别为193×10-6~463×10-6和163×10-6~461×10-6,238U含量分别为373×10-6~940×10-6和411×10-6~804×10-6,Th/U比值分别为0.41~0.73和0.40~0.73,显示出具有较为一致的变化范围。样品QJ01-3和QJ08-1中的所有锆石分析年龄都集中在谐和曲线上(图5),206Pb/238U加权平均年龄分别为141.8±1.6Ma和142.5±1.8Ma,谐和年龄分别为141.4±1.9Ma和142.9±1.8Ma,它们在误差范围内一致,代表了花岗闪长岩的成岩年龄,成岩时代也属早白垩世(燕山晚期早阶段)。一个继承锆石核年龄为1266.2±39.0Ma,形成时代为中元古代。
3.2 黑云母化学成分特征
黑云母电子探针成分分析数据列于表2。在Foster(1960)黑云母分类图解上,高家榜钨钼矿床花岗闪长斑岩和花岗闪长岩中的黑云母均为镁质黑云母(图6a)。数据表明,花岗闪长斑岩中的黑云母具较高的F和Cl含量(图6b),平均达0.79%和0.13%,Fe3+/Fe2+比值较低,平均0.22;而花岗闪长岩中黑云母的F和Cl的含量则明显相对较低(图6b),平均仅为0.28%和0.04%,但Fe3+/Fe2+比值则相对较高,平均0.31(表2)。用Fe3+-Fe2+-Mg三角图解来估计黑云母形成时氧逸度状态(David and Hans,1965),所有数据点均落于Ni-NiO和Fe2O3-Fe3O4缓冲剂线之间,但花岗闪长岩中的黑云母数据点明显更靠近Fe2O3-Fe3O4线,指示其结晶时具有相对更高的氧逸度(图6c)。在黑云母MgO-FeO/(FeO+MgO)图解中数据点均投于壳幔源区域,指示其寄主岩石为壳幔混合作用的产物(图6d)。
表2高家塝矿区花岗闪长斑岩和花岗闪长岩黑云母电子探针数据表(wt%)
Table 2 Electron probe data of biotite for the granodiorite-porphyry and granodiorite from the Gaojiabang W-Mo deposit (wt%)
样品号366-401366-540366-5406-5936-5936-5936-5936-5936-593366-395QJ01QJ03QJ03QJ22QJ30岩性花岗闪长斑岩花岗闪长岩SiO235.64 37.41 37.63 36.88 37.64 37.54 37.24 37.53 37.00 38.24 37.15 36.99 36.97 37.46 33.36 TiO21.84 2.85 2.74 3.23 2.48 3.03 3.04 3.03 3.20 2.08 3.89 3.80 3.91 3.98 3.73 Al2O314.02 13.45 13.42 13.89 14.04 13.95 13.75 13.86 14.04 12.67 13.87 14.46 13.74 13.53 13.77 FeO23.06 21.40 21.69 20.61 19.75 21.65 20.38 21.31 20.93 18.41 16.74 17.47 17.09 16.98 18.30 MnO0.32 0.20 0.21 0.00 0.00 0.20 0.25 0.32 0.25 0.16 0.00 0.00 0.00 0.00 0.00 MgO13.23 10.50 10.58 10.47 10.80 10.76 11.08 11.15 10.80 12.89 11.71 11.49 12.01 12.26 12.16 CaO0.09 0.03 0.02 0.00 0.00 0.00 0.04 0.00 0.07 0.00 0.02 0.03 0.00 0.00 1.40 Na2O0.11 0.14 0.14 0.10 0.07 0.10 0.16 0.12 0.20 0.16 0.15 0.15 0.05 0.12 0.12 K2O6.08 9.78 9.78 9.98 10.13 9.78 9.69 9.70 9.49 9.67 9.73 9.98 9.87 9.97 5.13 F1.17 0.57 0.44 0.51 0.58 0.61 0.98 1.28 1.13 0.67 0.33 0.43 0.26 0.22 0.15 Cl0.15 0.19 0.14 0.10 0.08 0.12 0.11 0.11 0.13 0.19 0.02 0.03 0.03 0.03 0.06 Total95.71 96.51 96.79 95.79 95.56 97.75 96.72 98.40 97.23 95.13 93.63 94.83 93.93 94.56 88.18 Si2.719 2.857 2.867 2.829 2.876 2.828 2.822 2.803 2.794 2.915 2.857 2.821 2.842 2.858 2.712 AlⅣ1.261 1.143 1.133 1.171 1.124 1.172 1.178 1.197 1.206 1.085 1.143 1.179 1.158 1.142 1.288 AlⅥ0.000 0.067 0.071 0.085 0.141 0.066 0.050 0.024 0.043 0.053 0.114 0.120 0.087 0.075 0.032 Ti0.106 0.164 0.157 0.186 0.143 0.172 0.173 0.170 0.182 0.119 0.225 0.218 0.226 0.229 0.228 Fe3+0.302 0.219 0.203 0.216 0.227 0.222 0.254 0.271 0.272 0.215 0.263 0.246 0.236 0.230 0.348 Fe2+1.169 1.147 1.179 1.106 1.035 1.142 1.037 1.060 1.049 0.959 0.814 0.867 0.862 0.854 0.896 Mn0.020 0.013 0.014 0.000 0.000 0.013 0.016 0.020 0.016 0.011 0.000 0.000 0.000 0.000 0.000 Mg1.504 1.195 1.202 1.198 1.230 1.209 1.252 1.241 1.216 1.465 1.342 1.306 1.376 1.395 1.474 Ca0.007 0.003 0.002 0.000 0.000 0.000 0.003 0.000 0.006 0.000 0.002 0.003 0.000 0.000 0.122 Na0.017 0.021 0.020 0.015 0.010 0.014 0.024 0.018 0.029 0.024 0.022 0.022 0.008 0.017 0.019 K0.592 0.952 0.950 0.977 0.987 0.940 0.937 0.924 0.914 0.940 0.955 0.971 0.968 0.971 0.532 Total7.698 7.781 7.797 7.784 7.773 7.778 7.746 7.729 7.728 7.785 7.737 7.754 7.764 7.770 7.652 MF0.502 0.464 0.463 0.475 0.494 0.468 0.489 0.479 0.476 0.553 0.555 0.540 0.556 0.563 0.542 Fe3+/Fe2+0.259 0.191 0.172 0.196 0.220 0.195 0.245 0.256 0.260 0.224 0.323 0.284 0.274 0.269 0.388
图6 高家塝矿区花岗闪长斑岩和花岗闪长岩黑云母分类三角图(a, 底图据Foster, 1960)、Cl-F含量关系图(b)、Fe3+-Fe2+-Mg三角图(c, 底图据 Wones and Eugster, 1965)和MgO-FeO/(FeO+MgO)图解(d, 底图据王晓霞和卢欣祥,1998)皖南地区燕山晚期早阶段含钨钼岩体(包括鸡头山、百丈岩、东源、逍遥等钨钼矿床)中黑云母数据范围引自宋国学(2010),周洁等(2015),范羽(2015),施珂等(2017)Fig.6 Classification diagram (a, after Foster, 1960), F vs. Cl diagram (b), Fe3+-Fe2+-Mg diagram (c, after Wones and Eugster, 1965) and MgO vs. FeO/(FeO+MgO) diagram (d, after Wang and Lu, 1998) of biotites from the granodiorite-porphyry and granodiorite in the Gaojiabang W-Mo depositThe range of biotite data of Late Yanshanian early stage W-Mo-bearing rocks (including Jitoushan, Baizhangyan, Dongyuan, Xiaoyao deposits) in the southern Anhui Province are cited from Song (2010), Zhou et al. (2015), Fan (2015), Shi et al. (2017)
图7 高家塝矿区花岗闪长斑岩和花岗闪长岩主量元素TAS图解(a, 底图据Middlemost, 1994)和SiO2-K2O图解(b,底图据Peccerillo and Taylor, 1976)Fig.7 TAS (a, after Middlemost, 1994) and SiO2 vs. K2O (b, after Peccerillo and Taylor, 1976) diagrams of major elements from granodiorite-porphyry and granodiorite in the Gaojiabang W-Mo deposit
3.3 岩石地球化学特征
3.3.1 主量元素
全岩主量元素分析结果见表3。数据表明,高家塝矿区花岗闪长斑岩和花岗闪长岩主量元素特征相似,均显示出高硅(SiO2含量变化于63.19%~69.44%,平均66.18%)、富钾(K2O含量变化于2.31%~5.39%,平均3.53%)、富钠(Na2O含量变化于3.54%~4.43%,平均3.98%)的特征。在TAS图解中大部分数据落入花岗闪长岩范围内,个别数据落入石英二长岩区域(图7a)。在SiO2-K2O图解中大部分数据落入高钾钙碱性系列区域,个别花岗闪长斑岩样品可能由于碱质热液蚀变导致钾含量增高而落入钾玄岩系列中(图7b)。因此,花岗闪长斑岩和花岗闪长岩均属高钾钙碱性系列中酸性侵入岩。
3.3.2 微量元素
全岩稀土元素和微量元素分析结果见表3。花岗闪长斑岩的ΣREE范围在130.6×10-6~161.2×10-6之间,平均151.6×10-6,LREE/HREE值为9.06~15.32,平均12.91,(La/Yb)N值为11.50~28.09,平均21.58,轻重稀土元素分异较强;δEu值为0.82~0.90,平均0.87,具较弱的Eu负异常。花岗闪长岩ΣREE范围在139.3×10-6~211.8×10-6之间,平均181.6×10-6,LREE/HREE值为12.36~15.40,平均14.03,(La/Yb)N值为16.15~24.35,平均20.52,轻重稀土元素分异较强;δEu值为0.77~0.93,平均0.84,具较弱的Eu负异常。对比可见,两者具有相同的球粒陨石标准化稀土元素配分模式,均呈右倾斜式,Eu负异常不明显(图8a),反映它们可能具有相似的成岩物质来源和形成机制。两者微量元素组成特征也基本一致:在原始地幔标准化微量元素蛛网图上具有相同的右倾型模式,较富集大离子亲石元素Rb、K,相对亏损高场强元素Nb、Ta、Ti、P等(图8b)。 Ba、Sr含量高(Ba>535×10-6,Sr大多>400×10-6),但相对于其两侧元素又表现为负异常。
表3高家塝矿区花岗闪长斑岩和花岗闪长岩主量元素(wt%)和微量元素(×10-6)含量
Table 3 Major (wt%) and trace (×10-6) elements analyzed results of the granodiorite-porphyry and granodiorite from the Gaojiabang W-Mo deposit
样品号366-335366-413366-605366-540-1366-432-2366-395366-487-1362-29362-30岩性花岗闪长斑岩SiO264.4669.4469.1068.2868.4368.8163.1966.0263.64TiO20.580.360.390.390.390.420.630.440.62Al2O315.8614.3214.8415.3215.1615.3315.2715.6316.08Fe2O30.520.100.260.150.170.070.810.130.15FeO3.751.942.222.032.452.512.643.355.09FeOT4.21 2.03 2.45 2.16 2.60 2.57 3.37 3.46 5.23 MnO0.080.020.030.030.040.030.060.030.05MgO2.570.520.790.680.970.821.691.282.24CaO4.181.902.152.932.343.083.183.264.39Na2O3.674.214.344.164.434.394.354.153.81K2O3.105.363.874.113.873.504.572.482.31P2O50.180.120.130.140.130.150.210.150.23LOI0.911.531.641.631.520.591.831.171.06Total100.59100.30100.35100.36100.36100.23100.75100.88100.47A/CNK0.930.880.970.920.960.920.851.010.96A/NK1.691.121.311.361.321.391.261.641.83Mg#0.500.290.340.340.380.340.450.370.41Rb138.0165.0104.5116.0107.0101.0135.0120.5110.5Ba86610679819508167348251080598Th7.208.639.369.408.159.599.057.986.76U2.082.982.963.052.363.523.512.251.59K257004450032100341003210029000379002060019200Ta1.11.61.61.61.71.61.31.60.9Nb13.820.021.121.120.921.517.219.513.1Sr680386943573482579604560502P8005006006006007009007001000Zr155169180178172178179197187Hf4.95.25.75.95.55.95.65.55.6Ti350022002300230023002500380026003700La26.933.435.234.437.235.234.235.030.3Ce56.366.669.968.672.070.570.570.361.6Pr6.086.737.247.547.637.657.636.806.71Nd22.924.625.727.327.927.328.025.824.8Sm4.694.665.035.295.215.175.485.004.88Eu1.201.261.351.321.391.381.461.351.33Gd4.093.793.854.323.994.024.584.504.41Tb0.590.480.510.550.520.530.600.640.64Dy3.202.242.442.512.512.623.023.553.79Ho0.640.400.420.460.440.410.540.700.79Er1.811.021.071.131.171.141.451.952.19Tm0.260.150.150.160.160.150.200.290.31Yb1.660.870.910.980.950.911.151.861.89Lu0.250.130.140.140.140.130.160.260.28Y18.412.012.012.112.612.315.519.820.9ΣREE130.6146.3153.9154.7161.2157.1159.0158.0143.9LREE/HREE9.4515.1215.2214.0915.3214.8512.5910.499.06(La/Yb)N11.6227.5427.7525.1828.0927.7521.3313.5011.50δEu0.820.890.900.820.900.890.870.850.86
续表3
Continued Table 3
样品号QJ-01-1QJ-01-2QJ-01-3QJ-03QJ-08-1QJ-08-2QJ18-1QJ22QJ30-1岩性花岗闪长岩SiO265.3165.1965.4264.5366.4668.1264.2766.7763.80TiO20.610.620.620.690.500.480.660.500.74Al2O315.4315.1814.8415.9815.3214.7315.8015.3015.43Fe2O31.751.791.511.991.541.492.081.622.42FeO2.552.572.872.842.182.492.772.162.86FeOT4.12 4.18 4.23 4.63 3.57 3.83 4.64 3.62 5.04 MnO0.080.080.080.080.080.070.090.080.10MgO1.501.561.571.721.461.461.921.522.10CaO3.752.902.564.243.091.164.203.464.10Na2O3.543.914.093.773.684.133.723.713.57K2O3.133.633.492.863.583.963.013.493.25P2O50.210.220.210.240.170.160.250.160.22LOI1.491.972.380.741.581.521.391.171.11Total99.79100.06100.22100.15100.06100.21100.64 100.38 100.21 A/CNK0.96 0.97 0.98 0.94 0.98 1.12 0.93 0.94 0.91 A/NK1.67 1.46 1.41 1.72 1.54 1.33 1.68 1.55 1.64 Mg#0.37 0.38 0.38 0.38 0.40 0.38 0.40 0.41 0.40 Rb103.0166.5168.0114.0129.5167.5112.0107.0101.0Ba618626681535673736557698755Th17.2515.9513.4515.6013.1513.3016.6515.5013.20U3.552.812.822.674.294.183.044.832.52K260003010029000237002970032900250002900027000Ta1.41.31.41.51.21.11.11.31.4Nb16.115.415.017.116.414.613.915.719.3Sr525451369546601440510540536P900 1000 900 1000 700 700 1100 700 1000 Zr197169199224157152211170212Hf5.34.25.15.94.34.15.85.06.0Ti3700 3700 3700 4100 3000 2900 4000 3000 4500 La37.848.244.047.643.131.841.243.045.7Ce80.689.187.395.179.663.378.378.088.2Pr8.998.989.009.987.746.457.607.308.58Nd32.332.532.236.227.222.927.526.331.0Sm5.935.875.876.674.694.184.744.465.47Eu1.411.431.421.671.191.071.311.121.47Gd4.974.544.495.453.883.243.643.564.58Tb0.650.620.580.720.510.470.560.500.68Dy3.343.333.443.662.802.522.802.663.81Ho0.640.600.600.700.510.460.540.520.78Er1.721.561.651.861.471.311.351.442.09Tm0.230.220.230.250.220.190.200.210.31Yb1.551.421.521.681.441.221.361.302.03Lu0.230.210.210.240.210.200.210.210.32Y18.117.817.720.216.513.814.914.822.1ΣREE180.4198.6192.5211.8174.6139.3171.3170.6195.0LREE/HREE12.53 14.89 14.13 13.55 14.81 13.50 15.07 15.40 12.36 (La/Yb)N17.49 24.35 20.76 20.32 21.47 18.70 21.73 23.73 16.15 δEu0.77 0.82 0.81 0.82 0.83 0.86 0.93 0.83 0.87
图8 高家塝矿区花岗闪长斑岩和花岗闪长岩球粒陨石标准化稀土元素配分图(a, 标准化值据Taylor and McLennan, 1985)和原始地幔标准化微量元素蛛网图(b, 标准化值据Sun and McDonough, 1989)江南过渡带花岗闪长质岩体数据引自文献Xu et al.(2010), Zhu et al.(2014), Li et al.(2017), Xie et al.(2017), Gu et al.(2018),宋国学(2010);皖南钨钼成矿带花岗闪长质岩体数据引自文献Xue et al. (2009), Xie et al.(2017), Wang et al.(2017), 周翔等(2012), 周洁等(2013);铜陵地区燕山晚期早阶段侵入岩数据引自文献Guo et al.(2013), Li et al.(2014), Yan et al.(2015), Chen et al.(2016), Xie et al.(2017)Fig.8 Chondrite-normalized REE patterns (a, normalization values after Talyor and McLennan, 1985) and primitive mantle-normalized trace element patterns (b, normalization values after Sun and McDonough, 1989) for the granodiorite-porphyry and granodiorite in the Gaojiabang W-Mo depositData sources of granodioritic rocks in the Jiangnan Transitional Belt are cited from Xu et al. (2010), Zhu et al. (2014), Li et al.(2017), Xie et al. (2017), Gu et al. (2018), Song (2010). Data sources of granodioritic rocks in the South Anhui Province W-Mo Metallogenic Belt are cited from Xue et al. (2009), Xie et al. (2017), Wang et al. (2017), Zhou et al. (2012, 2013). Data sources of granodioritic rocks in the Tongling ore district are cited from Guo et al. (2013), Li et al. (2014), Yan et al. (2015), Chen et al. (2016), Xie et al. (2017)
将矿区两个花岗闪长质侵入岩的微量、稀土元素地球化学特征与江南过渡带及其邻区燕山晚期早阶段侵入岩对比(图8a,b),显示高家塝矿区侵入岩与江南过渡带和皖南钨钼成矿带燕山晚期早阶段的花岗闪长质侵入岩极为相似,应属于同一系列;而与长江中下游成矿带铜陵矿集区燕山晚期早阶段闪长质侵入岩相比虽也有相似之处,但也有不同:高家塝和铜陵矿集区侵入岩均具有较弱的Eu负异常,但后者轻重稀土元素分异强度相对不如前者;铜陵矿集区侵入岩表现为Ba、Sr正异常,较弱的P负异常,而高家塝矿区侵入岩整体上相对略微亏损Ba、Sr(仅个别表现为Sr正异常),较强的P负异常。以上特征表明,包括高家塝矿区在内的江南过渡带侵入岩的岩浆源区可能与皖南钨钼成矿带更为相似,而与其北侧长江中下游成矿带的铜陵矿集区侵入岩略有不同。
3.3.3 Sr-Nd同位素
全岩Sr-Nd同位素分析结果列于表4。4件花岗闪长斑岩样品的(87Sr/86Sr)i介于0.70886~0.71050之间,平均0.70984,εNd(t)值介于-6.9~-4.1之间,平均-5.7;5件花岗闪长岩样品的(87Sr/86Sr)i介于0.70849~0.70896之间,平均0.70870,εNd(t)值介于-6.5~-3.9,平均-5.5。数据表明,花岗闪长斑岩与花岗闪长岩的Sr-Nd同位素组成特征基本一致,反映其成岩物质来源的一致性。在(87Sr/86Sr)i-εNd(t)图解中(图9a),高家塝矿区花岗闪长斑岩和花岗闪长岩的Sr-Nd同位素数据点较为集中。对比其北侧邻区长江中下游成矿带铜陵矿集区的燕山晚期早阶段侵入岩,矿区侵入岩具有相对较高的(87Sr/86Sr)i值,且其εNd(t)值明显高于铜陵矿集区,反映高家塝矿区侵入岩的成岩物质来源应该不同于铜陵矿集区燕山晚期早阶段的侵入岩。相反,高家塝矿区以及江南过渡带侵入岩的Sr-Nd同位素组成与其南侧邻区皖南钨钼成矿带燕山晚期早阶段侵入岩相近,进一步表明后二者具有相似的源区。
图9 高家塝矿床及其邻区侵入岩Sr-Nd同位素图解(a, 底图据 Chen et al., 2001修改)和t(Ma)-εNd(t)图解(b, 底图据Chen and Jahn, 1998修改)江南过渡带燕山晚期早阶段侵入岩Sr-Nd同位素数据引自Zhu et al.(2014),Gu et al.(2018),陈江峰等(1993),宋国学(2010);皖南钨钼成矿带燕山晚期早阶段侵入岩Sr-Nd同位素数据引自Xue et al.(2009),Yan et al.(2017),陈江峰等(1993),邢凤鸣和徐祥(1993),周翔等(2012),周洁等(2015);长江中下游成矿带铜陵矿集区燕山晚期早阶段侵入岩Sr-Nd同位素范围根据Wang et al.(2003),Xie et al.(2012),Yang et al.(2014),Yan et al.(2015),Chen et al.(2016),Wang et al.(2016),陈江峰等(1993),邢凤鸣和徐祥(1996)数据圈定Fig.9 Plots of initial Sr isotopic compositions vs. εNd(t) values (a, modified after Chen et al., 2001) and Nd isotope evolution diagram (b, modified after Chen and Jahn, 1998)Data sources of granodioritic rocks in the Jiangnan Transitional Belt are cited from Zhu et al. (2014), Gu et al. (2018), Chen et al. (1993), Song (2010); Data sources of granodioritic rocks in the South Anhui Province W-Mo Metallogenic Belt are cited from Xue et al. (2009), Yan et al. (2017), Chen et al. (1993), Xing and Xu (1993), Zhou et al. (2012), Zhou et al. (2015); Data field of granodioritic rocks in the Tongling ore district are cited from Wang et al. (2003), Liu et al. (2010), Xie et al. (2012), Yang et al. (2014), Yan et al. (2015), Chen et al. (2016), Wang et al. (2016), Chen et al. (1993), Xing and Xu(1996)
4 讨论
4.1 岩浆起源与成岩机制
高家塝矿区花岗闪长斑岩体与花岗闪长岩体空间上均为青阳-九华花岗岩基的重要组成部分,两者在空间上紧密相邻,花岗闪长斑岩体位于花岗闪长岩体的北部边缘(Zhangetal., 2017;图1、图2a)。时间上,本文测得花岗闪长斑岩的锆石U-Pb年龄为145.1±2.1Ma~144.9±2.2Ma,与前人获得的高家塝花岗闪长斑岩体的成岩年龄一致(145.0±2.0Ma;肖鑫等,2017),也与成矿年龄(辉钼矿Re-Os法年龄144.8±1.6Ma;肖鑫等,2017)在误差范围内一致。花岗闪长岩锆石U-Pb年龄为142.5±1.8Ma~141.8±1.6Ma,前人测得该岩体的成岩时代介于138.3±1.4Ma~142.0±1.1Ma(Xuetal., 2010; Wuetal., 2012; Zhangetal., 2018),显示其侵位时间较花岗闪长斑岩体稍晚,但两者成岩时代均为早白垩世,均属区域燕山晚期早阶段(150~136Ma)岩浆活动的产物。岩石主量、微量、稀土元素以及Sr-Nd同位素组成特征基本一致,指示高家塝矿区花岗闪长斑岩和花岗闪长岩侵入体在时空分布和物质来源上具有密切的成因联系,两者是由同一岩浆活动先后侵位到相近空间所形成的。
表4高家塝矿区花岗闪长斑岩和花岗闪长岩Sr-Nd同位素分析结果
Table 4 Sr-Nd isotopes analytic results of the granodiorite-porphyry and granodiorite from the Gaojiabang W-Mo deposit
样品号RbSr(×10-6)87Rb86Sr87Sr86SrISrεSr(t)SmNd(×10-6)147Sm144Nd143Nd144NdINdεNd(t)366-335138 6800.587 0.7114030.71019 83.24.6922.90.1238 0.512361 0.512244-4.1 366-413165 3861.237 0.7123380.70979 77.54.6624.60.1145 0.512249 0.512140-6.1 366-540-1116 5730.586 0.7100680.70886 87.65.2927.30.1171 0.512274 0.512163-5.6 362-30111 5020.637 0.7118180.71050 64.34.8824.80.1190 0.512211 0.512098-6.9 QJ-01-1103 5250.568 0.7099710.70883 63.95.9332.30.1110 0.512270 0.512167-5.6 QJ-01-3168 3691.318 0.7112040.70854 59.75.8732.20.1102 0.512293 0.512191-5.2 QJ-08-1130 6010.624 0.7099590.70870 62.04.6927.20.1042 0.512236 0.512139-6.2 QJ-08-2168 4401.102 0.7111810.70896 65.74.1822.90.1104 0.512223 0.51212-6.5 QJ18-1112 5100.636 0.7097740.70849 59.04.7427.50.1042 0.512352 0.512255-3.9
前人对于长江中下游成矿带铜陵矿集区和皖南钨钼成矿带燕山晚期早阶段侵入岩原始岩浆的起源仍未得到共识,但绝大多数学者认为铜陵矿集区侵入岩具有以幔源物质为主的壳幔混源成因的特征(Wuetal., 2000;Wangetal., 2003; 徐夕生等,2004;Yangetal., 2011;徐晓春等,2012;Chenetal., 2016);而皖南钨钼成矿带的岩浆源区则以壳源物质为主,没有或仅夹有一定量的幔源物质(Chenetal., 1985, 2001;陈江峰等,1993;邢凤鸣和徐祥,1993;周涛发等,2004;Xuetal., 2010;Guetal., 2018;Zhangetal., 2018)。前文已述,高家塝矿区花岗闪长质侵入岩的微量元素和稀土元素组成特征与皖南钨钼成矿带燕山晚期早阶段侵入岩大体相似,显示两者可能具有相似的岩浆源区。矿区花岗闪长质侵入岩富含SiO2,富集Rb、K等大离子亲石元素,亏损高场强元素Nb、Ta、Ti、P,显示壳源花岗岩的特征(Taylor and McLennan, 1985;Rudnick, 1995);Nb、Ta含量也与陆壳相当,Nb/Ta比值分别介于12.3~14.6和10.7~13.8,与大陆地壳范围重合(Nb/Ta=10~14),但明显低于CI型球粒陨石(Nb/Ta=17.3~17.6)和原始地幔的Nb/Ta比值(17.5),指示陆壳物质参与了岩浆过程且扮演了主要角色(赵振华等,2008)。野外地质调查中我们多次观察到花岗闪长岩体中发育有大量椭圆状或透镜状暗色包体,大小可达十几到几十厘米,岩石类型以闪长岩为主,与花岗闪长岩具有截然的接触面(图3a),前人认为这与岩浆混合作用有关(Xuetal., 2010;Guetal., 2018;Zhangetal., 2018),表明岩浆源区可能存在少量幔源物质的加入。在黑云母MgO-FeO/(FeO+MgO)图解中数据点均投于壳幔源区域(图8c),也指示矿区侵入岩为壳幔混合作用的产物,但总体上壳源物质占主导地位。将高家塝矿区侵入岩的Sr-Nd同位素组成与长江中下游成矿带铜陵矿集区、江南过渡带以及皖南钨钼成矿带燕山晚期早阶段中酸性侵入岩进行对比(图9a),发现铜陵矿集区侵入岩Sr-Nd同位素数据点都落在地幔趋势线与扬子下地壳之间,表明铜陵矿集区侵入岩是由幔源玄武质岩浆及其底侵导致加厚扬子下地壳发生部分熔融形成的岩浆混合并侵位结晶形成的,其岩浆源区为地幔+下地壳;而包括高家塝矿区的江南过渡带及皖南钨钼成矿带的侵入岩Sr-Nd同位素数据点落于地幔趋势线、扬子上地壳以及扬子下地壳之间的区域,并表现为偏离地幔趋势线向扬子上地壳源区过渡趋势,表明它们具有近于一致的岩浆起源,且明显有扬子上地壳成分加入,其岩浆源区为地幔(少量)+下地壳+上地壳。大量扬子上地壳物质的同化混染也造成了皖南地区燕山期侵入岩具有比铜陵矿集区明显更高的(87Sr/86Sr)i值和εNd(t)值。t(Ma)-εNd(t)图解还显示(图9b),高家塝矿区和皖南地区(包括江南过渡带和皖南钨钼成矿带)数据点落于皖南上溪群区域,表明源区可能有上溪群物质的加入。从区域地质上看,上溪群作为皖南地区的变质基底,厚度巨大(13354m以上),为一套中-新元古代浅变质火山-沉积岩系(陈江峰等,1989,2001;邢凤鸣等,1991;朱光和刘国生,2000),众多研究表明上溪群是皖南地区燕山期岩浆岩的重要物源区之一。Chenetal.(1985)、陈江峰等(1993)以及邢凤鸣等(邢凤鸣等,1991;邢凤鸣和徐祥,1993)测得皖南地区花岗质岩石的Nd同位素组成与上溪群在燕山期时的εNd(t)值(-8.2~-7.3)相近,据此认为这些岩体可能源于上溪群物源区的部分熔融;周涛发等(2004)也认为皖南地区燕山期岩浆岩为上溪群或成分类似于上溪群的岩石部分熔融的产物;Songetal.(2014)认为下地壳部分熔融形成的原始岩浆与上溪群重熔物质的混合是形成区域中生代燕山期大规模岩浆岩的主要原因;Yanetal.(2017)认为皖南地区的岩浆源区有类似上溪群物质的围岩混染。马振东等(1998)测得上溪群中W的平均浓度达2.23×10-6,在上溪群泥质岩和碎屑岩中W的浓度甚至分别可达4.67×10-6和10.54×10-6。因此我们认为,上溪群物质加入到皖南地区燕山晚期侵入岩浆为区域钨的成矿起到了重要作用。此外,高家塝矿区花岗闪长斑岩中部分继承锆石及其相应年龄(686.3±21.3Ma~811.0±22.8Ma)与区域上溪群浅变质岩系最大沉积年龄(727±12Ma;李双应等,2014)相近,也从另一方面反映上溪群物质可能有参与到岩浆活动和成岩过程中。而大于1000Ma和甚至大于2000Ma的继承锆石年龄表明源区物质可能还包含有更古老的中元古-古元古代的地壳基底(徐晓春等,2014;聂张星等,2016)。
综合以上分析,我们认为高家塝矿区侵入岩的岩浆源区不同于长江中下游成矿带铜陵矿集区,而与皖南钨钼成矿带相似:以壳源为主,有少量幔源物质的加入,壳源既包括下地壳源还包括上地壳源,上地壳源物质的加入可能是岩浆上升到浅位岩浆房中或侵位结晶过程中同化混染了扬子上地壳物质,如皖南上溪群。根据岩石微量元素地球化学特征,高家塝矿区两个花岗闪长质侵入岩Eu负异常微弱,强烈亏损Ti和P,表明岩浆演化过程中几乎没有长石的分离结晶,而可能经历了以钛铁矿+磷灰石为主的分离结晶作用。岩石轻重稀土分异明显,富集LREE,亏损HREE,具有高(La/Yb)N比值,贫Y和Yb,暗示岩浆源区有石榴子石残留(Selbyetal., 2000),指示岩浆源区至少在40km以上,形成压力至少>0.8~1.0Gpa,因为只有这样的环境石榴子石才能稳定存留于岩浆源区(张旗等,2006)。这表明该区一定存有加厚的下地壳,地球物理资料也揭示皖南地区之下地壳明显加厚,仍有山根的残留(朱光和刘国生,2000;周涛发等,2004)。结合区域地质和构造演化,我们认为,皖南地区,包括江南过渡带在内,作为中国东部的重要组成部分,受统一的地球动力学背景制约:晚侏罗世-早白垩世(145±5Ma~135Ma)时期,中国东部处在与古太平洋板块俯冲密切相关的大陆边缘岩浆弧的内陆一侧(汪洋等,2004; Li and Li, 2007;Wuetal., 2012;Yanetal., 2015),由此前印支运动(中三叠世-中侏罗世)的板缘环境(碰撞造山带前陆)转化为板内环境,进入碰撞造山后的应力转换期,构造应力由强烈挤压向伸展过渡(Maoetal., 2003;董树文等,2007;张岳桥等,2007;徐晓春等,2012)。此时矿区幔源玄武质岩浆底侵导致加厚的扬子下地壳发生部分熔融,并有少量地幔物质加入,形成了初始岩浆房。接着岩浆在上升过程中可能发生一次或多次停积形成中间岩浆房,在此期间明显同化混染了扬子上地壳和皖南上溪群物质,并在145~142Ma期间,岩浆上侵到地壳浅部并在相近的空间位置先后侵位结晶形成了高家塝矿区的花岗闪长斑岩体和花岗闪长岩体。
4.2 矿区岩浆侵位结晶条件的对比及其与成矿的关系
根据系统的野外地质调查和钻孔岩心观察,高家塝矿区花岗闪长斑岩呈小岩枝或岩脉状产出,与成矿关系密切,钨钼矿化主要集中于花岗闪长斑岩体及其内外接触带中,紧邻的花岗闪长岩体是青阳花岗闪长岩株的北缘,其中未见钨钼矿化(图2b)。前文研究表明矿区两个花岗闪长质岩体属同源产出的“兄弟关系”,而成矿特征则不同,推测可能是岩浆侵位结晶环境差异所致。
4.2.1 岩浆侵位条件对比
锆石的矿物学稳定性极高,可以很好地记录其形成环境,反演岩浆演化过程和侵位条件(Belousovaetal., 2002;Hoskin and Schaltegger, 2003)。本次研究发现,矿区花岗闪长斑岩中除发育燕山晚期岩浆锆石外,还含有众多的元古代继承锆石。这些继承锆石表现为两种类型:其一为自形长柱状或椭圆状的继承锆石,无明显的新生锆石边;其二为呈椭圆状的继承锆石核,具有较明显的核-边结构;而花岗闪长岩中则较少见有继承锆石,且均以继承锆石核的形式出现,并具有明显的核-边结构(图4)。花岗闪长斑岩中众多继承锆石存留原因可能是多样的,首先是岩浆形成后,在上升过程或滞留于浅位岩浆房中时可能明显同化混染了扬子上地壳物质,但岩浆存留时间短,或岩浆房体积小,或没有高温区域热场(围岩较冷),岩浆熔体温度下降快,所同化的围岩中的锆石尚未全部熔融即快速侵位到地壳浅部就位结晶。由于继承锆石处于岩浆熔体中的时间短,熔融程度低,在岩浆快速侵位和冷却过程中以继承锆石为结晶中心的再结晶时间也较短,导致新生锆石边不明显。相较之下,花岗闪长岩体出露面积大,其岩浆供应量巨大,并可能以底辟或“气球膨胀”的形式缓慢侵位到浅位空间(许卫等,1995;邱瑞龙,1996)。此时由于岩浆熔体本身巨大的能量以及前期岩浆侵位的热场效应的影响,其热源稳定,冷却缓慢,为继承锆石熔融和新生锆石边的再结晶提供了充份条件。另一方面,Milleretal.(2003)提出熔融温度较低的花岗质岩石富含继承锆石,反之,则贫继承锆石。Zhangetal.(2017)通过锆石饱和温度计算公式获得高家塝矿区花岗闪长斑岩结晶温度范围为673~704°C,平均685°C,花岗闪长岩则为727~780℃,平均748℃,显示花岗闪长岩具有相对更高的岩浆温度。但两者(尤其是花岗闪长斑岩)都低于一般花岗岩岩浆的结晶温度,指示岩浆可能是在水近饱和条件下发生的部分熔融(Harrisonetal., 2007),这也与岩石中含有的少量角闪石和黑云母斑晶(图3f,h)相一致。因此,在花岗闪长岩的岩浆温度较高和在水近饱和的条件下,其内大部分继承锆石已经熔融殆尽,而花岗闪长斑岩岩浆温度较低,继承锆石可能未受到明显的熔融作用而得以保留下来。
以上分析表明,花岗闪长斑岩和花岗闪长岩的岩浆在从同一岩浆房派生出来后,其岩浆性质和侵位结晶条件发生了变化,这可能在一定程度造成了两者成矿能力的差异。
4.2.2 岩浆氧逸度对比
岩浆的氧化还原环境在一定程度上控制了花岗质岩体的成矿专属性。Kigai(2011)认为钨矿化主要与钛铁矿系列的花岗质岩体有关,其次与磁铁矿-钛铁矿过渡系列岩体相关;Ishihara(1977)和Candela(1992)也认为钨矿床一般形成于相对较低的氧逸度环境中。在相对还原环境下W表现为不相容元素,此时W倾向于在残余岩浆中富集,并在岩浆演化晚阶段更易迁移到成矿流体中(Candela and Bouton, 1990;Huang and Jiang, 2014);而氧化环境则对铜-钼-金成矿有利,但不利于W在残余岩浆和成矿热液流体中的富集和迁移,一般不会形成具有工业价值的钨矿床(Maoetal., 2017)。
矿石矿物组成特征显示,高家塝矿床发育大量磁黄铁矿(图3d),而未见原生磁铁矿、赤铁矿、石膏等高氧逸度矿物,表明矿床形成于相对还原的环境下。而矿床形成之前的热液流体性质只能由岩浆的性质来大致判断。锆石中的Ce对岩浆氧化还原状态十分敏感,锆石 Ce4+/Ce3+比值常被用来指示岩浆的氧化还原状态(Ballardetal., 2002)。根据Ballardetal.(2002)提出的锆石Ce4+/Ce3+计算公式,我们得出花岗闪长斑岩366-413和366-605样品的锆石Ce4+/Ce3+平均值分别为191和226,花岗闪长岩QJ01-3和QJ08-1样品的锆石Ce4+/Ce3+平均值分别为480和547(表5),相比之下花岗闪长斑岩岩浆具有相对较低的氧逸度。岩石中Fe2O3和FeO的含量也常被用来指示岩浆的氧逸度,非原生岩浆中铁的氧化-还原平衡可以反映最末一次岩浆分异过程的氧化还原状态(Kress and Carmichael, 1991)。Blevin(2004)应用全岩ΔOX参数(ΔOX=lg(Fe2O3/FeO)+0.3+0.03FeOT;FeOT=0.9Fe2O3+FeO)来定义花岗岩类的氧化状态,并以ΔOX=0为界限来划分氧化和还原状态。高家榜矿区花岗闪长斑岩的ΔOX介于-1.2~-0.1之间,花岗闪长岩的ΔOX则均大于0,数值介于0.1~0.4之间(表5),在全岩lg(Fe2O3/FeO)-FeOT图解中花岗闪长斑岩数据点主要落在MR(弱还原)- SR(强还原)区域,而花岗闪长岩数据点落在MO(中等氧化)- SO(强氧化)区域(图10),表明花岗闪长斑岩形成于还原环境下,而花岗闪长岩形成于氧化环境下。黑云母电子探针分析数据显示,花岗闪长斑岩中黑云母Fe3+/Fe2+比值也较花岗闪长岩要低一些(表2),前者为0.172~0.260,后者为0.269~0.388,在黑云母Fe3+-Fe2+-Mg三角图解中虽然均落于Ni-NiO和Fe2O3-Fe3O4缓冲剂之间(图8b),显示花岗闪长斑岩中的黑云母结晶时的氧逸度可能并没有想象的那么低,但相较之下花岗闪长斑岩中的黑云母具有更低的Fe3+/Fe2+比值,且更靠近Ni-NiO线,指示其具有稍低的氧逸度(David and Hans, 1965)。以上分析表明,高家塝矿区花岗闪长斑岩和花岗闪长岩岩浆在侵位结晶过程中经历了不同的氧化还原环境:花岗闪长斑岩形成于相对还原条件下,而花岗闪长岩则形成于中等-强氧化条件下。前人研究也表明,皖南地区(包括江南过渡带和皖南钨钼成矿带)与钨(钼)矿化有关的岩体一般具有相对较低的氧逸度(图8b、图10),而与铜钼矿化有关的岩体都具有相对较高的氧逸度,无矿(弱矿化)岩体则形成于强氧化环境下(图10)。因此,岩浆氧逸度可能是控制区域岩体成矿能力的重要因素之一。
表5高家塝矿区花岗闪长斑岩和花岗闪长岩特征对比简表
Table 5 Characteristic contrast of granodiorite-porphyry and granodiorite from Gaojiabang deposit
特征花岗闪长斑岩花岗闪长岩岩体规模小型(体积<0.5km3)大型(体积>50km3)成矿特征矽卡岩-斑岩型钨钼矿化无矿化成岩时代~145Ma~142Ma岩石类型高钾钙碱性系列高钾钙碱性系列矿物组合斜长石、钾长石、石英、角闪石、黑云母、微量钛铁矿斜长石、钾长石、石英、角闪石、黑云母、微量磁铁矿结构构造斑状结构、块状构造中-粗粒结构、致密块状构造(87Sr/86Sr)i0.70886~0.71050,平均0.709840.70848~0.70894,平均0.70869εNd(t)-6.9~-4.1,平均-5.8-6.5~-3.9,平均-5.5锆石特征大量继承锆石或继承锆石核少量继承锆石核锆石Ce4+/Ce3+191~226480~547全岩ΔOX值-1.2~-0.1,平均-0.70.1~0.4,平均0.3黑云母Fe3+/Fe2+0.172~0.260,平均0.220.269~0.388,平均0.31黑云母中F、Cl平均0.80%和0.13%平均0.28%和0.04%全岩W含量1.3×10-6~6.7×10-6,平均4.0×10-60.3×10-6~1.1×10-6,平均0.7×10-6
图10 高家塝矿区花岗闪长斑岩和花岗闪长岩FeOT- lg(Fe2O3/FeO)图解(底图据Blevin,2004)皖南地区燕山晚期早阶段含钨(钼)岩体数据范围引自周翔等(2012),汪应庚(2013),宋国学(2010),陈芳等(2015),施珂(2016);含铜(钼)岩体数据范围引自Gu et al.(2018),Li et al.(2017),刘园园等(2012),艾金彪等(2013);无矿岩体数据范围引自Xue et al.(2009),Song et al.(2014),邢凤鸣和徐祥(1993),翁望飞等(2011)Fig.10 FeOT vs. lg(Fe2O3/FeO) diagram of granodiorite-porphyry and granodiorite from Gaojiabang deposit(after Blevin,2004)Data field of W-Mo-bearing rocks in the southern Anhui Province are cited from Zhou et al. (2012), Wang et al. (2013), Song (2010), Chen et al. (2015), Shi (2016); Data field of Cu-Mo-bearing rocks are cited from Gu et al. (2018), Li et al. (2017), Liu et al. (2012), Ai et al. (2013); Data field of ore-barren rocks are cited from Xue et al. (2009), Song et al. (2014), Xing and Xu (1993), Weng et al. (2013)
4.2.3 岩浆中F、Cl含量对比
4.2.4 岩体地质特征与成矿的关系
虽然高家塝矿区花岗闪长斑岩和花岗闪长岩在岩浆侵位和结晶过程中物理化学条件的差异对钨的地球化学行为产生了不容忽视的作用,但它们本身在地质学方面的差异也可能对矿床矿体的定位造成了一定的影响。姚凤良和孙丰月(2006)提到与矽卡岩型矿床有关的成矿侵入体多为小型岩株、岩瘤(出露面积仅为几平方千米),而规模巨大的岩基状侵入体除了由它分出的小型岩枝外,一般不形成矽卡岩型矿床。同样斑岩型矿床的形成也主要与浅成的小型斑岩体相关(Sillitoe, 2010)。对比高家塝矿区两类岩体规模和侵位深度,花岗闪长斑岩岩体主要呈岩枝状出露,为浅成侵位岩体,其岩体体积不足0.5km3;而花岗闪长岩则为一中深成侵位的大型岩体,其体积大于50km3(Yanetal., 2017;Zhangetal., 2017)。因此,浅成侵位的小型花岗闪长斑岩体可能更具成矿优势,如皖南地区的东源钨钼、逍遥钨多金属、马头铜钼、桂林郑-黄山岭钼铅锌等大-中型矿床均与这类浅成侵位的小型花岗闪长斑岩或花岗斑岩体密切相关。从岩石结构特征看,花岗闪长斑岩具斑状结构,前人研究表明斑岩体因其特征的斑状结构、角砾之间的裂隙以及其他因素(如爆破、岩浆冷缩、石英相变产生的体积差)所造成的裂隙系统为热量、深部成矿热液流体的运移提供了最佳通道,同时也是浅部低温流体循环涌入以及后来流体混合的最佳场所,为矿质富集沉淀提供最佳空间(Haynesetal., 1995;周文戈等,2002;Heetal., 2016)。另外,花岗闪长斑岩呈岩枝、岩脉状沿黄柏岭组碳酸盐岩地层侵入,发生了广泛而又强烈的矽卡岩化(图2),石榴子石和辉石在矽卡岩退蚀变过程中经分解释放出大量的钙,可能为白钨矿的沉淀提供了充足的钙源(翟裕生等,2011),形成矽卡岩型钨矿床。
综上所述,高家塝矿区起源相同的花岗闪长质岩浆在历经演化后其岩浆特征和侵位结晶条件可能发生了显著变化,导致矿区花岗闪长斑岩和花岗闪长岩的成矿能力出现显著差异。浅成侵位的小型花岗闪长斑岩体结晶于富含F、Cl的岩浆及相对还原的环境下,以及其岩体本身更小的体积、更为发育的裂隙系统、强烈的矽卡岩化等条件使其更具形成钨矿床的潜力。反之,大型花岗闪长岩的成矿潜力则较弱。这为皖南地区钨(钼)矿床的找矿勘探及成矿模式的建立提供重要依据。
5 结论
(1)高家塝钨钼矿床发育岩枝或岩脉状小型花岗闪长斑岩体和岩株状大型花岗闪长岩体,前者为赋矿岩体,后者不含矿,锆石U-Pb定年显示其成岩时代均为早白垩世,属皖南地区燕山晚期早阶段岩浆活动的产物,侵位时间上前者稍早于后者,就位空间上前者位于后者的边缘。
(2)高家塝矿区花岗闪长斑岩和花岗闪长岩具有极为相似的矿物组成特征和主量、微量、稀土元素组成特征及Sr-Nd同位素组成特征,反映其具有一致成岩物质来源和成岩机制,岩浆作用发生于在大陆板内构造背景和由强烈挤压向伸展过渡的构造应力背景之下,岩浆起源于地壳深部,幔源玄武质岩浆底侵引起加厚下地壳部分熔融,壳幔混源岩浆在上升过程中明显同化混染了扬子上地壳物质。明显的上地壳物质混染是以高家塝矿区为代表的皖南地区燕山晚期早阶段侵入岩与以铜陵铜金矿集区为代表的长江中下游成矿带的不同之处。
(3)高家塝矿区花岗闪长斑岩和花岗闪长岩在从同一岩浆房中派生出来后、历经演化,其岩浆性质和侵位结晶条件发生了显著变化。具体表现为,花岗闪长斑岩岩浆熔体规模小、岩浆温度低、冷却结晶较快,岩体形成于富含F、Cl和相对还原的环境;而随后侵位的花岗闪长岩岩浆熔体规模巨大,岩浆温度相对较高,冷却结晶慢,岩体形成于贫F、Cl和相对氧化的环境。这些特征及其所反映的岩浆演化和结晶条件可能暗示了其对成矿能力的影响:演化早期偏还原性的岩浆以及其中较高的F、Cl含量更有利于钨富集于岩浆期后热液流体中进而形成矿床,而且早期岩浆形成的花岗闪长斑岩体较小的体积、更为发育的裂隙系统以及强烈的矽卡岩化也为矿质富集和沉淀提供了有利条件;而大型花岗闪长岩体则不具备上述成矿优势条件,以致其无法形成具有工业价值的钨(钼)矿床。
致谢感谢华东冶金地质勘查局八一二地质队蒋其胜、韩长生、刘东周等高级工程师在野外工作中的大力支持和鼎力协助;感谢中国科学技术大学放射性成因同位素地球化学实验室陈福坤老师和肖平实验员在实验过程中的指导和帮助;感谢审稿专家对稿件提出的建设性修改意见。
值此岳书仓教授八十八华诞之际,谨以此文表达对岳书仓教授崇高的敬意和深厚的谢忱,并衷心祝愿岳老师健康长寿!