长江中下游成矿带钨矿床*
2019-12-27周涛发聂利青王世伟汪方跃张千明
周涛发 聂利青, 3 王世伟 汪方跃 张千明
1. 合肥工业大学资源与环境工程学院,合肥工业大学矿床成因与勘查技术研究中心(ODEC),合肥 2300092. 安徽省矿产资源与矿山环境工程技术研究中心,合肥 2300093. 安徽建筑大学土木工程学院,合肥 2306014. 安徽省地质矿产勘查局327地质队,合肥 230011
世界上超过四分之三的钨产于中国,我国钨储量居全球首位,占世界总储量的一半以上(USGS, 2018(1)USGS.2018.www.sciencebase.gov/catalog/item/5ae385eae4b0e2c2dd320826)。华南是我国钨矿聚集地,赣南地区更有“世界百年钨都”美称(王登红等, 2012)。近年来,我国钨矿勘探取得了突破性进展,华南矿产资源“南钨北扩”的趋势日益显著,具体表现为钨矿床已由南岭成矿带过渡到钦杭成矿带,再过渡到长江中下游成矿带(杨松生等, 1985; 常印佛等, 1991; 宋国学等, 2010; 颜代蓉等, 2012; 钟国雄等, 2014; 孙洋等, 2014; 陈雪锋, 2016; 谢桂青等, 2017; 肖鑫, 2019; 聂利青, 2019; 朱乔乔等, 2019)。长江中下游成矿带是我国地质学和成矿学研究的热点地区之一(周涛发等, 2012),是“玢岩型铁矿床”(宁芜玢岩铁矿编写组, 1978)、“层控矽卡岩矿床”(常印佛等, 1991)和“复合叠加成矿理论”(翟裕生等, 1992)的发祥地。相比成矿带内铜(金)、铁矿床,成矿带钨矿床成矿作用及其与铜铁多金属矿床伴生的钨矿化的的研究还比较薄弱,特别是近年来在长江中下游成矿带新发现白钨矿床(如,东顾山钨矿床、阮家湾钨矿床)和产于矽卡岩-斑岩型铜矿床、磁铁矿-磷灰石型矿床中的钨矿化点(如铜山口含钨矿床、龙桥含钨矿床),其成矿作用和成矿规律的研究亟待加强。此外,钨矿床的成矿物质一般来自壳源(Meinert, 1995; Richards, 2011; Rasmussen and Mortensen, 2013),而长江中下游成矿带内的铜、铁矿床成矿物质普遍认为主要来自幔源(Lietal., 2013, 2019; Wangetal., 2015; Nieetal., 2017; Liuetal., 2018)和/或先存幔源物质的活化(周涛发等, 2017),包括钨元素在内的不同来源的多种成矿物质均在长江中下游成矿带聚集并达到矿床规模,非常有必要加强该成矿带钨矿床成矿物质来源的研究。长江中下游成矿带矿种组合愈发丰富(铁-铜-金-钨-钼-铅-锌-银-锑等),除铁铜外的其他矿化类型特别是关键金属将可能是该成矿带以后资源勘查的新的方向。因此,总结长江中下游成矿带钨矿床成矿规律和钨的成矿作用,不仅具有重要的科学意义,也将为促进区域钨矿床的找矿突破,开拓整个成矿带钨矿床找矿工作新局面做出贡献。
本文在前人研究和作者已有工作的基础上,通过对长江中下游成矿带的钨矿床和含钨矿床的地质地球化学特征、成岩成矿时代、成矿岩体的地质和地球化学特征等的进一步总结,并与全球和我国华南典型钨矿床的对比,初步探讨了长江中下游成矿带钨矿床的物质来源、岩体成矿专属性和成矿构造背景,初步阐明了长江中下游成矿带钨矿床的主要特点,以期进一步推动长江中下游成矿带矽卡岩型钨矿床的成矿作用和成矿规律研究。
1 区域地质背景
长江中下游成矿带位于扬子板块北缘的断裂坳陷带内,其北界为襄樊-广济断裂和黄栗树-破凉亭断裂向北稍扩,南界为崇阳-常州断裂向南稍扩,东界以丹阳-常州东一线,西界为商麻断裂,总体上呈南西狭窄、北东宽阔的“V”字型地带(图1)。成矿带基底为晚太古代-新元古代变质核杂岩构成的崆岭-董岭式基底和由巨厚海相浊积复理石沉积岩夹海相火山岩以及晚元古代花岗岩组成的江南式基底(董树文等, 2011),上覆为一套连续的震旦系-早三叠系被动大陆边缘沉积,直到中三叠世进入板内变形阶段,发育巨厚的陆相沉积岩系和火山岩系。
图1 长江中下游成矿带地质简图(据常印佛等, 1991, 2017; 周涛发等, 2017)XGF-襄樊-广济断裂; TLF-郯庐断裂; HPF-黄栗树-破凉亭断裂; SMF-商麻断裂; CCF-崇阳-常州断裂; CHF-滁河断裂; JNF-江南断裂Fig.1 Geological map of the Middle-Lower Yangtze River Metallogenic Belt (after Chang et al., 1991, 2017; Zhou et al., 2017)XGF-Xiangfan-Guangji Fault; TLF-Tancheng-Lujiang Fault; HPF-Huanglishu-Poliangting Fault; SMF-Shangcheng-Magushan Fault; CCF-Chongyang-Changzhou Fault; CHF-Chuhe Fault; JNF-Jiangnan Fault
长江中下游成矿带共分为三个成矿亚带(常印佛等, 2017; 周涛发等, 2017),分别为北亚带、中亚带和南亚带(图1)。中亚带为长江中下游成矿带的主体,延长纵贯全区,宽度达数十千米,包括自东向西包括宁镇、宁芜、庐枞、铜陵、安庆-贵池、九瑞和鄂东南7个矿集区(图1)。与铜成矿作用有关的岩浆岩为高钾钙碱性岩石组合,由辉石二长闪长岩、闪长岩、石英闪长岩和花岗闪长岩等组成;与铁成矿作用有关的侵入岩为富钠钙碱性系列岩石,以辉石闪长岩和二长岩为主,火山岩为橄榄安粗岩系列岩石,主要为粗安岩、粗面岩、安山岩和玄武岩等,此外,在还出现A 型花岗岩和碱性火山岩组合等(宁芜玢岩铁矿编写组, 1978; 常印佛等, 1991; 邢凤鸣和徐祥, 1999;毛景文等, 2004b; 范裕等, 2008; 周涛发等, 2008, 2011)。北亚带位于郯庐断裂带以东,已发现东顾山、沙溪、琅琊山等矿床,与成矿有关的岩浆岩为黑云母花岗岩、粗斑闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩、黑云母石英闪长玢岩。北亚带成矿条件和环境复杂多样,矿化类型包括铜、铁、硫铁矿、金、银、铅锌等。南亚带位于主亚带矿集区以南,已发现了溧阳、宣城、泾县等矿床分布区,都分布在崇阳-常州断裂断裂带的东段,成矿元素组合以铜钼钨为主,兼有金、铅锌矿化,很明显地具有与中亚带和江南隆起区过渡的成矿特色。
2 钨矿床地质地球化学特征
钨矿床在长江中下游成矿带三个亚带中均有分布,达到大型规模的仅有北亚带的东顾山矿床、中亚带的阮家湾矿床和南亚带的桂林郑矿床和高家塝矿床(图1),另外,在成矿带中还产出一系列局部有白钨矿化但尚未综合利用的含钨的铜金、钼或铁矿床,如铜山口含钨铜金矿床、龙桥含钨铁矿床和姚家岭含钨锌金矿床。现对上述钨矿床的地质和地球化学特征分别简要介绍如下。
2.1 东顾山矿床
东顾山钨矿床位于安徽省合肥市庐江县境内,大地构造位置处于长江中下游成矿带北亚带内的滁河断裂北侧、黄栗树-破凉亭断裂以南(图2),是北亚带内目前探明的大型矽卡岩型钨矿床。该矿床由安徽省地勘局327地质队于2014年发现,已探明WO3资源量72500t,平均品位0.19%;Mo资源量38100t,平均品位0.3%;Pb资源量1729t,平均品位3.17%;Zn资源量2010t,平均品位1.24%(安徽省地质矿产勘查局327地质队,2014(2)安徽省地质矿产勘查局327地质队.2014.安徽省庐江县顺港地区铜金多金属矿普查实施方案.内部资料)。
图2 东顾山钨多金属矿床简要地质图(a)和剖面图(b)(据安徽省地质矿产勘查局327地质队,2014)Fig.2 Simplified geological map (a) and a cross section (b) for the Donggushan deposit
矿床赋矿地层为奥陶系碳酸盐岩,成矿岩体为距地表800m左右深度的东顾山隐伏岩体,岩性为黑云母花岗岩,浅肉红色,半自形粒状结构,块状构造,主要为钾长石50%、石英25%、斜长石20%、黑云母5%。成岩年龄为99.7~99.9Ma(锆石U-Pb法),成矿年龄为97.22 ±0.70Ma(辉钼矿Re-Os法)(聂利青等, 2017)。
图3 阮家湾矿床简要地质图(a)和剖面图(b)(据Xie et al., 2007; 颜代蓉, 2013)Fig.3 Simplified geological map (a) and a cross section (b) for the Ruanjiawan deposit (after Xie et al., 2007; Yan, 2013)
钨多金属矿床的矿体形态主要呈似层状和平缓透镜状,钨矿体赋存在岩体与围岩的接触带及其围岩中(图2b)。矿床是由钨钼矿体(矿体Ⅰ)、钨矿体(矿体Ⅱ)和铅锌矿体(矿体Ⅲ)组成(图2b),钨钼矿体主要由浸染状矿石组成,铅锌矿体主要由平行缓倾斜(0°~20°)粗脉和不同倾向和倾角的网脉组成。铅锌矿化主要发育在钻孔中402~408m、702~757m、897~ 908m和973~1066m;钨钼矿化主要发育在917~957m、1066~1161m和1186~1204m。成矿金属元素在空间上具有一定的分带性,其总的分带趋势是:由岩体一侧的内矽卡岩→接触带→外矽卡岩→碳酸盐围岩,矿化分带为Mo→Mo-W→W-Pb-Zn→Pb-Zn。在垂向上由上而下,金属元素分带大致为:(Ag)Pb-Zn→(Cu)Pb-Zn→Mo-W。主要金属矿物为白钨矿、辉钼矿、方铅矿和闪锌矿,还有少量磁铁矿、黄铁矿和黄铜矿。矿床围岩蚀变主要为矽卡岩化,矽卡岩矿物主要有石榴子石、透辉石、透闪石、硅镁石等。
聂利青(2019)对该矿床流体包裹体测温和氢氧硫同位素组成显示,东顾山矿床成矿流体由中高温度、中盐度的热液流体演化为中低温度、低盐度的热液流体,热液流体由中性演化为中酸性,成矿流体在钨成矿阶段的后期发生岩浆水与大气水的混合,在石英硫化物阶段大气降水混合比例约为40%,流体混合是导致矿质沉淀成矿的重要原因。
石榴子石的微量元素特征记录了矽卡岩形成过程中热液流体的物理化学条件和组分,Van Westrenen(2000)提出相对于 REE3+置换 Ca2+而言,Eu2+进入钙质石榴子石榴石替换Ca2+所需的自由能远低于REE3+,因此Eu2+更容易进入钙质榴石。Smith(2004)进一步指出 Eu2+在钙质榴石与热水溶液间的分配系数(DREEgarnet /fluid)要比 Eu3+高很多,而且温度大于250℃的矽卡岩系统中Eu主要以Eu2+稳定存在(Bau, 1991; Sverjensky, 1984)。东顾山矿床中石榴子石微量元素组成显示,从钙铝榴石到钙铁榴石,轻稀土富集程度加强,且铕正异常逐渐增加的趋势(聂利青,2019)。表明矽卡岩阶段成矿流体中有大量的Eu2+离子,而pH值的降低有利于溶解更多的Eu2+,反映矽卡岩阶段成矿流体由扩散交代阶段的中性环境演化为平流交代阶段的中酸性环境(Bau, 1991; Gasparetal., 2008; Zhaietal., 2014)。从氧化物阶段到硫化物阶段,白钨矿微量元素中轻稀土富集程度逐渐减弱且铕负异常程度减弱,且Mo含量降低,反映了随着白钨矿的结晶,成矿流体的氧逸度降低(聂利青等, 2017)。白钨矿的εNd(t)范围为-16.4~17.7,87Sr/86Sr值为0.70957~0.71113,指示东顾山矿床的成矿物质来自壳源,可能由董岭群变质基底提供了成矿物质(聂利青等,2017)。
综上,东顾山矿床为黑云母花岗岩与奥陶系沉积碳酸盐岩地层发生接触交代作用形成的矽卡岩型钨多金属矿床,成矿过程中成矿流体温度和氧逸度均逐渐降低,钨等成矿物质来自董岭式基底。东顾山矿床与长江中下游成矿带及邻区的鸡头山矿床(εNd(t)=-9.5~-9.1,87Sr/86Sr=0.70946~0.70974,Songetal., 2014)、大湖塘矿床(εNd(t)=-8.1~-6.1,87Sr/86Sr= 0.7230~0.7657,Sun and Chen, 2017)中的白钨矿同位素特征差别较大,指示成矿物质来源不同。鸡头山矿床、大湖塘矿床等钨矿床的成矿物质来源来自江南式基底,东顾山钨矿床成矿物质来自董岭式基底。东顾山钨矿床的发现客观上说明我国华南钨矿床“南钨北移”的界限越过了长江。
2.2 阮家湾矿床
阮家湾钨矿床位于湖北省黄石市阳新县境内(图3),大地构造位置处于长江中下游成矿带中亚带内的鄂东南矿集区,阳新岩体南端,殷祖向斜东部,是一大型矽卡岩型钨矿床。该矿床于1955年发现,已探明WO3资源量60300t,品位为0.26%~0.41%,Cu资源量6300t,品位为0.518%~1.365%(舒全安等, 1992)。
赋矿地层为奥陶系下统分乡组和红花园组,以含泥质条带和白云质灰岩为特征(舒全安等, 1992)。黄姑山-犀牛山倒转背斜为阮家湾矿床的主要控矿构造,矿区地表出露阮家湾岩体,岩性为花岗闪长岩,灰白色,半自形粒状结构,块状构造,主要矿物为斜长石40%、钾长石25%、石英25%、角闪石5%、黑云母5%。成岩年龄为143±1Ma(锆石、榍石U-Pb),成矿年龄为143±2Ma(辉钼矿Re-Os)(Xieetal., 2007; 颜代蓉, 2013)。
阮家湾钨矿床的矿体形态主要呈似层状、扁豆状或透镜状,矿体赋存在岩体与碳酸盐岩接触带或岩体顶部。矿床是由钨矿体(矿体Ⅰ)、钨铜矿体(矿体Ⅱ)和钼矿体(矿体Ⅲ)组成(图3b)。钨矿体位于阮家湾岩体与碳酸盐岩的东南和西南接触带,大理岩为矿体顶板,矿体的底板为角岩,矿体的产状与层间破碎带一致,矿体长960m,厚1~23m,标高90~212m。矿体顶板为大理岩或矽卡岩,底板为花岗闪长岩或大理岩。矿体呈似层状,走向为北东-南西方向,矿体长1232m,赋存标高为230~318m。钼矿体位于岩体顶部,矿体呈长条形扁豆状、透镜状,矿体长50~179m,厚6~6.5m。阮家湾矿床的主要金属矿物为白钨矿、黄铜矿、辉钼矿,还有少量黄铁矿和磁铁矿。围岩蚀变主要为矽卡岩化,分布于岩体与围岩的接触带。
流体包裹体测温表明,阮家湾钨矿床成矿流体为高温岩浆热液,硫同位素矿物对测得的成矿温度为292~340℃,与所测成矿阶段包裹体温度一致,早期矽卡岩矿物的包裹体中含有大量子晶,显示在矽卡岩阶段很可能发生过流体沸腾。硫同位素、氧同位和方铅矿、闪锌矿、黄铁矿和磁黄铁矿的铅同位素表明成矿流体为自岩浆水,后期有大气水加入(颜代蓉, 2013)。
黄铁矿的Co、Ni元素含量变化大,从10n×10-6~100n×10-6均有,Co/Ni比值>1,Co、Ni相关性图解落入岩浆热液的范围,且Se/Te元素比值符合矽卡岩型矿床中黄铁矿的比值,也证明阮家湾矿床与岩浆热液活动密切相关(颜代蓉, 2013)。
综上,阮家湾钨矿床为花岗闪长岩与奥陶系沉积碳酸盐岩地层发生接触交代作用形成的矽卡岩型钨矿床,属中高温岩浆热液矿床,成矿流体和物质主要来自花岗闪长质岩浆(岩)。
2.3 桂林郑矿床
桂林郑钨钼矿床位于安徽省池州市贵池区梅街镇境内,处于江南断裂北侧、阳新-常德深断裂南侧,谭山岩体与青阳-九华复合岩体之间的黄山岭背斜北东翼(图4),是长江中下游成矿带南亚带内探明的大型矽卡岩型钨钼矿床之一。矿床已探明WO3资源量44000t,平均品位0.088%,其中,Mo资源量15000t,平均品位0.127%;Zn+Pb储量210000t、平均品位4.62%(安徽省地质矿产勘查局324地质队,2010(3)安徽省地质矿产勘查局324地质队.2010.安徽省贵池市黄山岭地区多金属矿普查实施方案.内部资料)。
图4 桂林郑矿床简要地质图(a)和剖面图(b)(据李文庆和曹静平, 2006)Fig.4 Simplified geological map (a) and a cross section (b) for the Guilingzheng deposit (after Li and Cao, 2006)
主要赋矿地层为奥陶系下统仑山组白云岩,矿区约800m深度见桂林郑岩体,岩性为花岗斑岩,肉红色,斑状结构,半自形粒状结构,成岩年龄为127.6±1.5Ma(锆石U-Pb),成矿年龄为127.5Ma(辉钼矿Re-Os)(陈雪锋, 2016)。
桂林郑钨钼矿床的矿体形态主要呈似层状、透镜状产出,由钨钼矿体和铅锌矿体组成(图4),钨矿体赋存在奥陶系下统地层与花岗斑岩的接触带,铅锌矿体赋存在奥陶系下统地层与志留系地层之间形成的层间滑脱带中。钨钼矿体主要由浸染状矿石组成,铅锌矿体地表有出露或钻孔浅部局部出露由粗脉和网脉组成。元素分带与东顾山矿床有相似性,上部铅锌,下部钨钼。桂林郑矿床金属矿物为白钨矿、辉钼矿、方铅矿、闪锌矿、磁黄铁矿、磁铁矿、黄铁矿和黄铜矿,围岩蚀变有矽卡岩化、蛇纹石化、绿帘石化、绿泥石化等。矽卡岩矿物主要有钙铝榴石、钙铁榴石、透辉石、硅灰石、透闪石、绿泥石、蛇纹石等。
矿物微区成分分析表明,石榴子石从核部到边部,钙铝榴石成分增加,钙铁榴石成分降低;辉石由深部至浅部,也呈现Al含量增加,Fe含量降低的特点,指示成矿热液由较高氧逸度碱性环境向较低氧逸度酸性环境演化(陈雪锋, 2016)。空间上,矿化在深部以辉钼矿、白钨矿、磁铁矿等高温矿物为主,浅部以方铅矿、闪锌矿等中低温矿物为主(陈雪锋, 2016)。流体包裹体和同位素地球化学研究表明,矿床成矿流体主要为岩浆热液(陈雪锋, 2016)。
综上可见,桂林郑矿床为花岗斑岩岩浆热液与奥陶纪碳酸盐发生交代和充填作用,在中、高温条件下形成的层控矽卡岩型矿床。
2.4 高家塝矿床
高家塝钨钼矿床位于安徽省池州市青阳县境内,构造位置处于长江中下游成矿带南亚带内的江南断裂北侧、周王断裂南侧,阳新-常德深断裂、贵池-青阳基地断裂(WE)和大通-青阳基底断裂(NW)三组区域性深大断裂交汇处(图5),是成矿带南亚带内产出的大型矽卡岩型钨钼矿床。矿床已探明WO3资源量60476.23t,平均品位0.276%,其中Mo资源量5183.01t,平均品位0.106%。Au资源量67.98kg,平均品位6.55g/t。伴生Au资源量0.37t,平均品位0.18g/t,伴生Ag资源量31.87t,平均品位1.50g/t(华东冶金地勘局812地质队, 2014(4)华东冶金地勘局812地质队.2014.安徽省铜陵市姚家岭地区锌金多金属矿普查实施方案.内部资料)。
寒武系下统黄柏岭组炭质页岩夹大理岩为矿床的赋矿地层。主要控矿构造为高家塝背斜。成矿岩体为青阳岩体,可分为两个岩相:细粒花岗闪长斑岩和花岗闪长岩。花岗闪长岩和细粒花岗闪长斑岩的成岩年龄分别为144.9±1.2Ma和145±2Ma(锆石U-Pb法),成矿年龄为146.1±4.8Ma(辉钼矿Re-Os法)(肖鑫等, 2017)。
高家塝矿床的矿体形态为似层状长条形,矿体赋存于矽卡岩带中。矿床是由钨钼矿体(矿体Ⅰ和Ⅱ)组成(图5b),矿石主要呈浸染状,钨钼矿化发育在-53~-750m。高家塝矿床的金属矿物为白钨矿、辉钼矿、黄铁矿和磁黄铁矿,少量磁铁矿和黄铁矿,围岩蚀变为主要矽卡岩化,并有绿泥石化和绿帘石化(Zhangetal., 2017)。
范羽(2015)对高家塝矿床的矽卡岩矿物进行主微量元素分析(EPMA)发现,矽卡岩中辉石为透辉石-钙铁辉石系列,石榴子石为钙铝榴石-钙铁榴石系列。石榴子石环带及石榴子石-辉石矿物对的成分特征表明,成矿环境是变化的,在早期岩浆流体出溶后,成矿热液中酸度升高、氧逸度降低,随后逐渐过渡到相对还原的环境。高家塝矿床为花岗闪长岩与寒武系沉积碳酸盐岩地层发生接触交代作用形成的矽卡岩型钨钼矿床。
2.5 含钨矿床
除上文在长江中下游成矿带产出的已成规模的钨矿床,该成矿带还产出一系列含白钨矿化的铜钼、锌金、铁矿床,因此,本文将这些局部有白钨矿化但尚未综合利用的矿床称作含钨矿床,这些矿床的特征前人已有很多文献介绍,本文只简要介绍如下:
铜山口铜矿床位于湖北省大冶市内,大地构造位置处于长江中下游成矿带中亚带,是含钨的铜钼矿床。矿床已探明 Cu 资源量 0.6Mt,平均品位 0.74%(吕新彪等, 1992)。白钨矿主要产出于岩体与围岩的接触带,多呈浸染状产于矽卡岩中或其附近的交代岩内。矽卡岩中的钨矿化和铜矿石中的钨矿化已形成独立的钨矿体。矽卡岩钨矿体中的白钨矿呈自形,并被黄铜矿、斑铜矿包裹或穿插,白钨矿在矽卡岩和铜矿石中均有产出,呈浸染状分布于石榴子石矽卡岩中,也有少量产出在辉石矽卡岩中,交代早期的矽卡岩矿物。铜矿石中产出的白钨矿呈浸染状分布,粒度小于在矽卡岩中产出的白钨矿(朱乔乔等, 2019)。
图5 高家塝矿床简要地质图(a)和剖面图(b)(据肖鑫等, 2017)Fig.5 Simplified geological map (a) and a cross section (b) for the Gaojiabang deposit (after Xiao et al., 2017)
龙桥铁矿床位于安徽省合肥市庐江县,大地构造位置上处于长江中下游成矿带中亚带,是含钨的铁矿床。矿床已探明铁储量约 1.4亿吨,全铁品位 43.9%(安徽省地质矿产勘查局327地质队, 1991(5)安徽省地质矿产勘查局327地质队.1991.安徽省庐江县龙桥铁矿勘查地质报告. 内部资料; 吴明安等, 1996)。白钨矿主要产出在 370中段的磁铁矿体中,白钨矿呈脉状产出。
姚家岭锌金矿床位于安徽省铜陵市境内,大地构造位置上处于长江中下游成矿带中亚带,是含钨的锌金多金属矿床。矿床已探明锌122.01万吨,平均品位3.61%;金32296.67千克,平均品位 5.18g/t(蒋其胜等, 2008; 华东冶金地质勘查局 812 地质队, 2014)。白钨矿主要分布于矽卡岩中,交代早期形成的矽卡岩矿物,也有少量分布于岩体顶部,散布于石英、长石斑晶粒间,呈星点状、稀疏浸染状或局部呈团状(钟国雄等, 2014)。
3 钨矿床成矿作用
3.1 成矿时空格架
长江中下游成矿带各类矿床的成矿时代研究一直受到普遍关注,前人对成矿带内矽卡岩-斑岩型铜(金)矿床和磁铁矿-磷灰石型铁矿床的形成时代及变化规律开展了大量工作(余金杰和毛景文, 2002; Sunetal., 2003; 毛景文等, 2004b;王彦斌等, 2004; 马芳和蒋少涌, 2005; Dingetal., 2006; Xieetal., 2007, 2012; 杜杨松等, 2007; 谢智等, 2007; Lietal., 2008, 2009; 范裕等, 2008; 蒋少涌等, 2008; 吴才来等, 2008; 杨晓勇等, 2008; 周涛发等, 2008, 2010; 侯可军和袁顺达, 2010; 段超等, 2011; 范裕等, 2011, 2014; 张智宇等, 2011; Wuetal., 2012; 赖小东等, 2012; 瞿泓滢等, 2012;王世伟等, 2014;关俊朋等, 2015),明确了铜(金)矿床成岩成矿时代主要在146~135Ma之间,峰值在140Ma,成矿作用持续时间约为10Myr;铁矿床对应的成岩成矿时代为135~126Ma,峰值在130Ma,大部分铁矿床的成矿作用在1~2Myr时间内集中形成,比铜(金)矿床的形成时间约晚5~10Myr,分属成矿带不同成矿阶段的产物(常印佛等, 2017; 周涛发等, 2017)。
图6 长江中下游成矿带成矿年龄直方图(底图据周涛发等, 2017)Fig.6 Ages of deposits in the MLYB (after Zhou et al., 2017)
长江中下游成矿带内的钨矿床在上述两个阶段均有产出,如阮家湾钨矿床和高家塝钨矿床成矿时代属于146~135Ma范围,桂林郑钨矿床和百丈岩钨矿床成矿时代属于135~126Ma范围,另外,在100Ma前后,又发生了新的一期钨矿床的形成,如东顾山钨矿床为(聂利青等, 2017)。成矿带内铜(金)和铁的主要成矿时期,均不同程度的共伴生程度不等的钨矿化,前者如姚家岭多金属矿床,后者如龙桥铁矿床,因此,目前可以将长江中下游成矿带钨成矿作用划分为三期,时间上大致对应140Ma、130Ma和100Ma(图6)。
长江中下游成矿带三期钨的成矿作用在中国东部并非是孤立的事件,在钦杭成矿带的大湖塘超大型钨铜矿床、朱溪超大型钨铜矿床、阳储岭大型钨钼矿床、东源大型钨矿床等的成岩成矿时代范围均为146~135Ma(秦燕等, 2009; 丰成友等, 2012; 项新葵等, 2012, 2013;周翔等, 2012; Maoetal., 2013; 李岩等, 2014; 陈国华等, 2015; 王先广等, 2015; 李春海, 2016; 张志辉, 2016; Maoetal., 2017; 刘善宝等, 2017);在华南地区则有柿竹园钨多金属矿床、西华山钨矿床等成矿时代对应于135~126Ma(李红艳等, 1997; 毛景文等, 2004a; 王勇等, 2009);此外,华南地区的粤西大金山钨锡矿床、广西珊瑚钨锡矿床和三叉冲钨钼矿床的成矿时代则相当于100Ma左右(毛景文等, 2012;王炯辉等, 2014; 余勇等, 2014)。这说明长江中下游成矿带与整个华南成矿域的钨的成矿事件基本可以对应,钨成矿的年代格架有很大的相似性,成矿的背景应该受华南大地构造演化的统一影响和制约。
3.2 成矿矿质来源
关于长江中下游成矿带钨矿床的物源区,多数学者认为是壳源的(刘英俊和马东升, 1987; 罗铭玖等, 1991; Meinertetal., 2005; Zhaoetal., 2018),即其成矿岩浆主要通过基底岩石重熔和同化混染方式产生。基底对壳源元素成矿起着决定性作用,如徐克勤等(1982)认为华南地区之所以形成东钨西锡的格局是因为东基底为龙山群,西基底为四堡群;康永孚(1991)指出江南隆起的基底(板溪群和双桥山群)可为钨矿床提供成矿物质来源。此后,众多学者通过具体的矿床研究也证明了板溪群和双桥山群对矿质钨的贡献作用,如大湖塘矿床的矿质来源为双桥山群(黄兰椿和蒋少涌, 2013; Maoetal., 2017; Sun and Chen, 2017);马振东等(1999)指出,下扬子地球化学省是钨锡铜金优势远景区;宋国学(2010)认为,长江中下游成矿带南亚带产出的鸡头山、百丈岩钨矿床与基底有相关关系,含矿岩浆在地壳中运移并充分同化混染壳源元素,进而形成以钨元素为主的矿化。而地球深部探测也证明长江中下游成矿带正好处于董岭式基底和江南式基底结合的边界线上(董树文等, 2011; 常印佛等, 2017)。此外,前人研究表明(常印佛等, 2017; 周涛发等, 2017),长江中下游成矿带基底对成矿控制明显,铁铜组合与基底岩石(董岭式基底)中的早期幔源火山岩及其产生的I型岩浆岩有关,而以碎屑岩为主的江南式基底及其产生的I 型和S型岩浆岩则发育钨元素组合矿化。
我们的研究表明,不能将长江中下游成矿带基底对矿种的控制简单的归为“董岭式基底成铜铁,江南式基底成钨”。因为新的勘探成果表明,在成矿带北亚带对应董岭式基底的地区也存在钨矿床或钨矿化,同样也有文献证明双桥山群对钦杭成矿带内的钨-铜矿床除了提供了W元素外,也贡献了Cu元素(Maoetal., 2017; Sunetal., 2018)。由此可知,在成矿带内,基底对矿种的控制形式较为复杂,董岭式基底也有成钨矿的潜力,江南式基底也有成铜矿的可能,应是基底的不均一性造成的。总体来说,长江中下游成矿带北亚带和中亚带多产出以铜为主的矿种组合其原因在于董岭式基底Cu元素背景值高,深隐伏于盖层之下的基底为不同矿集区提供成矿物质(常印佛等, 2017);南亚带多产出以钨钼铜为主的矿种组合,则是由于江南式基底的壳源元素含量远高于地壳平均值(Maoetal., 2017),可见,董岭式基底和江南式基底对长江中下游成矿带钨的成矿作用都具有控制作用。
3.3 岩体成矿专属性
长江中下游成矿带内钨的成矿专属性研究不多,前人的主要研究集中在成铜(金)岩浆和成铁岩浆的成矿专属性方面,如常印佛等(1991)认为铜(金)矿床主要与高钾闪长岩类岩石直接相关,铁矿床主要与富钠闪长岩类岩石密切联系。唐永成等(1998)指出与高钾闪长岩有关的矿床以铜为主,伴生金,有时共/伴生铁;与碱性辉石闪长岩有关的矿床以铜金为主,并有独立金矿形成;与富钠闪长岩有关的矿床则以铁铜组合为特征。王强等(2005)指出,长江中下游成矿带内铜金矿化与埃达克岩关系密切。最新的研究表明,成铜岩浆和成铁岩浆可能来自不同深度的源区,且演化过程也不完全一致(Wangetal., 2015;常印佛等, 2017; 周涛发等, 2017)。表1总结了长江中下游成矿带成钨、成铜(金)、成铁三类岩浆岩的主要特征。
(1)成钨岩浆岩主要为黑云母花岗岩、花岗闪长岩、花岗斑岩、细粒花岗岩,属于高钾钙碱性岩石系列;成铜岩浆岩主要为石英闪长岩、花岗闪长岩和辉石闪长岩,属于钙碱性岩石系列;成铁岩浆岩主要为辉石闪长岩、闪长岩,属钙碱性、高钾钙碱性和钾玄岩系列(常印佛等, 1991; 翟裕生等, 1992; 周涛发等, 2005, 2008; 徐晓春等, 2012; Wangetal., 2015)。
表1长江中下游成矿带成钨、成铜和成铁岩浆岩特征对比表
Table 1 Characteristics of tungsten, copper and iron mineralization intrusive rocks of the MLYB
特征成钨岩浆岩成铜(金)岩浆岩成铁岩浆岩成岩时代145~100Ma146~135Ma135~125Ma岩石类型黑云母花岗岩、花岗闪长岩、花岗斑岩、细粒花岗岩石英闪长岩、花岗闪长岩、辉石闪长岩辉石闪长岩、闪长岩岩性酸性、中酸性中酸性中性、中基性岩石系列高钾钙碱性系列高钾钙碱性系列钙碱性、高钾钙碱性和钾玄岩系列HREE含量平均值9.0×10-6平均值13.1×10-6平均值18.0×10-6La/Yb8.9~53.7,平均值31.211.7~82.9,平均值30.95.4~32.3,平均值20.0Sr/Y0.31~55.4,平均值30.721.2~242.1,平均值64.524.1~56.6,平均值42.1δEu平均值0.6平均值0.9平均值0.8εNd(t)-16.5~-4.3,平均值为-9.5-14.4~-3.1,平均值为-7.7-8.8~-4.9,平均值为-7.2εHf(t)-18.8~-7.0,平均值为-13.8-7.3~0.5,平均值为-4.2-23.9~-0.8,平均值为-9.4成岩机制结晶分异为主岩浆混合为主结晶分异为主岩浆源区加厚地壳(董岭式基底或江南式基底)重熔富集岩石圈地幔和加厚下地壳部分熔融形成的岩浆的混合岩浆富集岩石圈地幔岩浆结晶分异作用.岩浆在浅部定位过程中与膏岩层发生作用
(2)成钨岩浆岩的HREE平均值为10.0×10-6,La/Yb比值为8.9~53.7、平均值31.2,Sr/Y比值为0.31~55.4(平均值30.7);δEu平均值0.6;成铜岩浆岩的HREE平均13.1×10-6,La/Yb比值为11.7~82.9(平均为30.9),Sr/Y比值为21.2~242.1(平均为64.5),δEu平均为0.9;成铁岩浆岩的HREE平均18.0×10-6,La/Yb比值为5.41~32.25(平均为20.0),Sr/Y比值为24.1~56.6(平均为42.1),δEu平均为0.8。可见,HREE从成钨到成铜再到成铁逐渐降低,La/Yb比值则升高,这可能是由于成钨、成铜的岩浆岩形成于地壳加厚状态,源区发生了富集重稀土矿物(如石榴子石)的结晶,但是成钨岩体比成铜岩体有更低的Sr/Y和δEu值表明,成钨岩体的岩浆岩源区不仅有石榴子石的结晶,还有斜长石残留,而成铁的岩浆岩形成时地壳薄,不能形成石榴子石、斜长石等矿物。
(3)成钨岩浆岩εNd(t)值为-16.5~-4.3(平均为-9.5),εHf(t)值为-18.8~-7.0(平均值为-13.8);成铜岩浆岩εNd(t)值为-14.35~-3.07(平均为-7.69),εHf(t)值为-7.3~0.5(平均值为-4.2);成铁岩浆岩εNd(t)值为-8.8~-4.9(平均值为-7.2),εHf(t)值为-23.9~-0.8(平均值为-9.4),可见,成钨与成铜、成铁岩浆岩最显著的差别是εHf(t)值很低,并表现为Zr/Hf、K/Rb比值小,具有低氧逸度和富F挥发分等特征,这可能是由于成钨岩浆岩为古老地壳物质重熔并经历了充分的分异演化的酸性岩浆,而成铜岩浆岩的母岩浆为富集岩石圈地幔和加厚下地壳部分熔融形成的长英质混合岩浆,而成铁岩浆岩的母岩浆为富集岩石圈地幔部分熔融的基性岩浆。Yangetal. (2013) 通过对南岭地区西华山岩体和水口山岩体同位素研究也认为,源区差异和演化过程的不同是导致南岭地区矿化类型差异的关键原因。因此,源区差异是导致长江中下游成矿带成钨与成铜、成铁岩浆岩成矿差异的根本原因,对其演化过程也有着重要影响。
3.4 成矿背景与成矿模式
长江中下游成矿带成矿构造背景研究近年来取得了很多重要进展,大家讨论的焦点集中在古太平洋板块对长江中下游成矿带成岩成矿作用的影响与作用方式。有学者认为成矿物质和热量均与古太平洋板块俯冲作用有关(Maniar and Piccoli, 1989; Sunetal., 2007, 2011; Lingetal., 2009; Liuetal., 2010);也有学者认为太平洋板块仅提供远程动力作用,不提供成矿物质,大别造山带演化对该成矿带起着重要的影响(董树文和邱瑞龙, 1993; 李曙光, 2001;侯增谦, 2004; Maoetal., 2006; 董树文等, 2007),成矿带内广泛分布的断裂、褶皱和推覆构造是由于下地壳和岩石圈地幔的陆内俯冲造成的,并认为陆内俯冲是岩石圈增厚和拆沉的主导机制(吕庆田等, 2004, 2011, 2014; Lüetal., 2015),是成矿带的动力学背景。吕庆田等(2004, 2011, 2014)根据地球物理研究,将长江中下游成矿带中生代构造演化划分为碰撞挤压阶段(二叠纪末至早侏罗世)、拆沉伸展阶段(早侏罗世至中白垩世)、后期伸展稳定阶段(晚白垩世至第四纪),并指出,燕山期的陆内俯冲是造成长江中下游成矿带大规模成岩和成矿作用的主导机制。上文总结表明,长江中下游成矿带钨的成矿经历了三个期次,与华南区域上钨的成矿作用大致可以对应,其总体构造背景和演化相似,但前者除了受到处于南、北两个块体之间这一成矿带特殊的构造位置或次级构造单元的影响,还受到董岭式基底和江南式基底对成矿作用的深部制约。本区钨成矿第一、二期主要伴随铜或铁的成矿,其构造背景比较明确;第三期则与铜、铁分离,与钼、铅锌、银等共生产出,钨成矿的构造背景还有待深入研究。有关长江中下游成矿带钨矿床的成矿过程,现简要说明如下:
在燕山期,受古太平洋板块俯冲挤压的远程效应,扬子板块发生广泛变形,古老造山带(即微陆块拼贴带,黄汲清, 1945; 杨明桂等, 2015)“再活化”,上地壳发生逆冲-褶皱变形。由于受华北板块和大别山的强烈“阻挡”,长江中下游成矿带发生了“陆内俯冲”,即上、下地壳发生脱耦、岩石圈叠置增厚。在早白垩世,由于古太平洋板块挤压应力减弱(或因角度变化),大规模幔源岩浆底侵,软流圈上涌和底侵,导致地壳物质部分熔融形成偏铝质的花岗岩岩浆。长江中下游成矿带的董岭群和双桥山群变质基底富含钨等组分,是形成原始含矿(W)岩浆的物质基础。随着岩浆的结晶分异,钨等成矿元素聚集在岩浆房的顶部,并上升侵位在古生代白云岩、灰岩沉积地层中,含矿岩浆热液与碳酸盐岩发生交代反应,形成长江中下游成矿带内的矽卡岩型钨矿床和含钨矿床。
4 结论
(1)长江中下游成矿带存在三期(140Ma、130Ma、100Ma)钨成矿作用,前两期钨矿化分别与成矿带中铜和铁的成矿相伴,第三期则形成以钨为主的多金属矿床。
(2)长江中下游成矿带钨矿床的成矿岩体为古老地壳物质重熔并经历了充分分异演化的产物,岩浆源区(特别是基底)差异是导致成矿带内成钨与成铜和成铁的主要原因。
(3)燕山期的陆内俯冲是造成长江中下游成矿带钨和其他金属大规模成矿作用的主要构造背景,晚期(100Ma)钨矿床形成的构造背景还有待深入研究。
岳书仓教授从事矿床学教学和科研工作50余年,为矿床学人才培养和学科发展做出了杰出的贡献。岳书仓教授在火山岩和矿床学领域取得的科研成就令人叹服;他精益求精、不折不挠的治学精神使人肃然起敬;他对晚辈学生孜孜不倦的教导和精心的培养使我终身受益;他胸怀家国天下的情怀值得我们终身学习。谨以此文祝贺岳书仓教授八十八华诞。