基于大数据的配电网线损定位与评估方法研究
2019-11-16杨婧辛明勇欧家祥王俊融宋强
杨婧 辛明勇 欧家祥 王俊融 宋强
摘要:针对当前配电网输电线路损耗异常无法溯源且定位难的问题,基于计量自动化系统采集的数据,通过对站、线、变、户基础数据的治理,采用自动最优聚类算法对用户用电行为分类,采用随机森林建立各类线损之间的关联关系模型,构建配电网线路损耗和台区损耗分析与定位方法,并开发基于线损异常精确定位的计量自动化运维平台。通过对贵州省某供電局辖区2516个用户的数据进行分析和实验验证,该文所提出的线损分析与定位方法能对配电网线损异常进行溯源和精确定位。
关键词:配电网;线损;关联分析;大数据
中图分类号:TM 73 文献标志码:A 文章编号:1674-5124(2019)07-0019-06
收稿日期:2019-04-01;收到修改稿日期:2019-05-14
作者简介:杨婧(1988-),女,湖南邵阳市人,工程师,硕士,研究方向为计量自动化及电网节能降损。
0 引言
我国配电网规模日趋庞大,电力设备日益增多。电能线损产生于输电、变电、配电、售电各个环节,作为电力企业的重要综合性经济指标,线损率不仅能够反映电力企业的经济性,还能够反映企业的盈利率[1-2]。线损率的大小不仅与技术状况、运行方式、电网结构有关,还取决于供电企业生产经营活动中降损节能的管理水平。线损的精细化管理对于提高供电企业的经济效益有着至关重要的作用。然而,在配电网大力发展的同时,电网输电线路的损耗也在不断增长,开展配电网线损分析与定位的研究变得尤为重要。配电网长期存在资产利用率低、经济运行指标低、网损严重的问题,城乡配电网损耗占总量的70%左右[3-4]。如何智能分析配电网线路损耗,降低网损成为亟待解决的问题[5]。
线损可以分为理论线损和管理线损。目前关于理论线损的研究主要利用电网拓扑结构、潮流等实测数据,基于电力系统知识,采用理论计算方法进行计算,或采用机器学习的算法,利用历史数据对线损值进行预测[6-7]。管理线损包括窃电、计量表误差、漏电等[8-10]。过去针对管理线损分析研究主要集中在窃电分析上。Bharat Dangar等[11]提出了一种使用极限学习机(ELM)、改进ELM(OS-ELM)、支持向量机(SVM)3种算法来进行电力损耗识别、检测和预测的电力损耗分析框架。Li yinghui等[6]提出了基于BP神经网络的客户消费行为分析模型,利用该模型可以计算出窃电的怀疑系数,并对电力用户的信用等级进行分类,得出了一个可行的解决窃电问题的思路。康宁宁等[12]利用模糊C均值(FCM)算法对负荷曲线进行聚类,得到典型特征曲线,再与用户负荷曲线进行匹配,筛选出疑似窃电用户,再使用基于粒子群算法优化的SVM算法进行进一步检测,准确性比SVM算法高。
积分电量可用于广泛分析计量损耗和漏电等行为,大连电业局基于SCADA系统,设计了一套实时积分电量及电量报表、日负荷曲线平台。2016年,国网江西省电力公司的南昌供电分公司结合EMS/SCADA(能量管理系统/数据采集与监视控制系统)系统和TMR(远程抄表系统)系统的数据,设计建立了一套比对报警系统,对积分电量和表底电量在线实时进行“双值比对”,对电量异动实现智能型、综合性监控,为电力计量消缺提供充分的技术保障[13]。
可以发现,过去研究主要针对单一线损,由于各类线损不是孤立存在,目前对线损之间的关联与耦合缺乏研究。为实现站、线、变、户层级关系逐级排查达到准确分析和定位的目的,本文基于大数据技术,采用机器学习算法、聚类、挖掘、关联关系等分析方法,充分利用计量系统产生的海量数据资源,构建直观有效的配电网线损分析评估体系,实现线损构成可视化,线损率变化可溯源,降损任务可分解等功能,全方位、多维度支撑管理降损和技术降损。
1 基础数据处理
基础数据是系统建设的基石,数据质量是保证数据应用和信息化实用效果的基础。基础数据主要以计量自动化系统为电能量数据源,以营销系统为档案数据源、以GIS系统为电网拓扑、以地理信息为背景数据源。对各数据的采集整合和分析,确保各数据的准确性和一致性是实现线损精确定位的基础。通过研究数据质量校核支撑技术,结合持续管理机制,如统一业务数据标准、定期检查问题、闭环解决质量问题等逐步解决数据基础的正确和一致,以支撑上层应用的数据质量要求。
数据预处理流程如图1所示,对收集的数据进行清洗,通过数据预处理方法剔除错误信息,补充缺失信息,制定规范化数据准则,为线损分析与定位提供高质量数据。通过数据一致性比对,根据实际需要设置比对多维度条件,如设备名称、电气参数等相似度,进行系统间一致性比对,得到计量自动化系统与营销系统、GIS系统之间数据具体差异,理清线变户关系,抽离出需要整改的数据源,规范数据属性,实现数据标准化正则化。对此,本文主要采用个案剔除法和均值替换法清洗数据,解决异常数据,提高数据质量。
1)个案剔除法
个案剔除法是直接剔除异常的数据记录,当数据样本比较少时,删除样本会影响结果的客观性和正确性,当异常值比较少时,该方法可以快速剔除异常信息。
针对计量数据,如果某一计量点(用户)或台区在某一天的数据连续出现异常值或者异常率超过阈值,则直接删除该计量点(用户)或台区当日的全部数据,不计人模型建立中。例如,日负载率表中数据缺失严重,所以某些日子的数据则删除。但是,由于通信故障等原因导致的数据异常,不能采用简单的剔除法来删除异常信息。对于该类异常数据,则根据通信恢复后的计量数据,结合计量点的用能习惯,反演出计量点通信异常期间的数据,再判断计量数据是否需要剔除。
2)均值替换法
均值替换法解决了个案剔除法中将许多有用的信息被剔除的问题。若该值为数值型,则使用其他样本中该属性取值的平均值来填充;若该值取值为非数值型,则采用其他样本中取值较多的值来填充。
当样本中异常值较少,则采用异常值左右的数据取平均值来代替。例如电压电流在某一时刻缺失,则将其近似看作线性曲线,用两侧示值的平均值代替。对于资产系统、调度系统、营销系统产生的档案数据、计量数据、计量关系数据,为电网运行数据,不能直接作为线损分类的分类指标,需要根据电力数据之间的物理规律以及分类分析所需对源数据进行统计分析,找出电力数据的特征属性,以便于对线损进行分类。
2 线损分析与评估
首先利用线损类别分类器对当前线损进行分类,判别出当前的线损综合构成。在此基础上,针对于分类出的每种线损行为,根据相应的计算与分析模型,训练相应的分类器。将各台区线损分类为理论线损、通信线损、窃电线损3大类,然后再根据对应的分类器对各大类线损进行精细化分类,分别找出各部分线损产生的位置(即由哪些计量点或用户产生),实现线损构成可视化、线损率变化可溯源,指导工作人员对降损任务进行分解,实现全面降损。
1)理论线损
理论线损是由电网本身结构、设备决定的,电能传输不可避免地造成损失,它主要与技术状况、运行方式、电网结构有关,包含各电力元件可变损耗部分及固定损耗部分。目前常用的计算方法有等值电阻法、均方根电流法、平均电流法等。但是,这些算法大多用于10kV配电网的理论线损计算,而0.4kV低压配电网由于供电方式复杂,供电出线回路不同,沿线负荷分布没有严格规律,各相负荷分配不平衡。基于此,本文采用改进等值电阻法计算理论线损,能够获得比较准确的计算结果。
配电网中变压器和导线的等效电阻Re表示如下:式中:Api——通过i段线路供电的用户有功电量;
Aqi——通过i段线路供电的用户无功电量;
Ri——i段线路电阻;
AP
VIM=∑(errOBB2-errOBB1)/n(4)
VIM数值越大,表明该异常对线损越重要,需要优先治理。
3 案例分析
为验证本文所提出的方法的有效性,构建了基于Hadoop和Spark的大数据平台底层架构,架构采用B/S相结合的模式,按照数据访问层、应用逻辑层和前端展示层进行多层结构体系设计,采取面向对象技术进行应用组件开发。平台主要分为前端和后端,前端主要由HTML、JavaScript等语言组成,平台后端主要业务逻辑由Java编写实现。
依托搭建的系统,根据贵州省某供电局提供的用户用电数据、台区计量数据、设备状态信息,选取了某区域2015年12月到2016年10月的数据。涉及4条线路,53个台区共计2516个用户。首先进行数据预处理,对2516户计量用户数据中心离群值进行剔除,对于缺失的数据,采用均值替换法,补全缺失的数据,保证数据完整性与合理性。
随后采用最优聚类方法,分别用余弦相似度和欧氏距离作为聚类的距离指标,得到聚类中心为4和初始聚类中心点,随后采用k均值快速聚类,如图4所示,得到4类特征用户,分别为居民、商城、企业、学校特征的用户。
用户数据进行线损行为分析,得到各线损构成如图5所示,可以发现,窃电损耗和通信线损为主要线损,其他线损主要由三相不平衡、功率因素超限、过载、重载、轻载等因素构成。
台区线损异常进行关联关系分析与评估,得到线损异常重要性分布如图6所示。可以发现,在所有线损因素当中,通信异常和窃电损耗对线损重要性最大,导致的线损损失最为严重,应该重点治理,其他因素如三相不平衡、功率因素超限、过载、重载、轻载等影响较小,可以延后处理。
4 结束语
本文采用大数据聚类、挖掘和关联分析等算法,针对计量自动化系统采集的数据,通过对站、线、变、户基础数据进行分析,从理论线损、通信线损和窃电损耗等方面出发,构建了配电网线路损耗和台区损耗分析与定位方法,并基于大数据平台构建方法,搭建了线损异常精确定位的计量自动化运维平台。通过对贵州省某地区的数据进行分析,验证了文章所提出的线损分析与定位方法,能实现配电网线损异常的溯源和精确定位。
参考文献
[1]CHATTERJEE S,ARCHANA V,SURESH K,et al.Detection of non-technical losses using advanced meteringinfrastructure and deep recurrent neural networks[C]//IEEEIntemati-A Conference on Environment and ElectricalEngineering,2017.
[2]杨柳,罗璇,肖宝辉,等.配电网线损在线监测系统与计算分析研究[J].自动化与仪器仪表,2019(1):25-28.
[3]杨悦辉.计量自动化系统在计量管理工作中的应用[J].计量与测试技术,2013(4):16-37.
[4]刘飞轮.供电企业电力营销中的电能计量自动化系统应用分析[J].硅谷,2013,6(20):95,91.
[5]汪司珂,汪应春,郭雨,等.同期线损故障排查关键技术研究与应用[J].仪表技术,2017(12):11-14.
[6]LI H,LUNG X,LU R,et al.EPPDR:An efficient privacy-preserving demand response scheme with adaptive keyevolution in smart grid[J].IEEE Transactions on Parallel andDistributed Systems,2014,25(8):2053-2064.
[7]徐茹枝,王宇飞.粒子群优化的支持向量回归机计算配电网理论线损方法[J].电力自动化设备2012(5):86-89.
[8]HUANG S,VVU Q,CHENG L,et al.Optimal reconfiguration-based dynamic tariff for congestion management and line lossreduction in distribution networks[J].IEEE Transactions onSmart Grid,2016,7(3):1295-1303.
[9]高志芳,鄒香香,汪棋.智能计量监控在反窃电工作中的应用[J].决策与信息,2014(36):181.
[10]NOURAI A,KOGAN V I,SCHAFER C M.Load levelingreduces t&d line losses[J].IEEE Transactions on PowerDelivery,2008,23(4):2168-2173.
[11]DANGAR B,JOSHI S K.Notice of violation of IEEEpublication principles electricity theft detection techniques formetered power consumer in GUVNL,GUJARAT,INDIA[C]//Clemson University Power Systems Conference(PSC),2015
[12]康宁宁,李川,曾虎,等.采用FCM聚类与改进SVR模型的窃电行为检测[J].电子测量与仪器学报,2017,31(12):2023-2029.
[13]何喜玲,韩婷,杜佳,等.变电所电量对比系统分析[J].现代电子技术,2016,39(12):41-44,47.
[14]翟金凤,孙立博,鲁凯,等.基于抽样和两级CBF的长流识别算法[J].中国测试,2018,44(7):105-109.
[15]刘耀杰,刘独玉.基于不平衡数据集的改进随机森林算法研究[J].计算机技术与发展,2019(6):1-7.
(编辑:商丹丹)