APP下载

土壤侵蚀对坡耕地耕层质量退化作用及其评价趋势展望

2019-11-08史东梅金慧芳蒋光毅

农业工程学报 2019年18期
关键词:坡耕地耕层土壤侵蚀

史东梅,金慧芳,蒋光毅

土壤侵蚀对坡耕地耕层质量退化作用及其评价趋势展望

史东梅1,金慧芳1,蒋光毅2

(1. 西南大学资源环境学院,重庆 400715; 2. 重庆市水土保持生态环境监测总站,重庆 401147)

土壤侵蚀是导致坡耕地耕层质量退化和土壤生产力不稳定的关键驱动因素。该文从水蚀区坡耕地侵蚀控制和生产功能角度,在解析地块尺度土壤侵蚀、水土保持、农业活动对坡耕地耕层生态过程作用特征的基础上,系统分析了土壤侵蚀对坡耕地耕层质量退化作用、影响效应及作用途径。认为:1)坡耕地耕层质量变化由降雨侵蚀、耕作活动交互作用的生态过程决定,2种作用的时间、空间尺度不同;耕层土壤参数在坡耕地农业生产中作用分为保水、保土、保肥和增产潜力,由地块尺度农作物-耕层耦合效应决定土壤生产能力、坡耕地水土流失特征及耕层侵蚀性退化方向及程度。2)土壤侵蚀对坡耕地耕层质量退化作用表现为土壤性质恶化、土壤质量劣化、土地生产力衰退3个方面,耕层土壤物理性质变异程度大于化学性质变异,径流作用导致的土地生产力衰退大于土壤流失作用。3)坡耕地耕层质量评价指标体系应兼顾侵蚀下降、产量提升2个目标,地块尺度诊断指标有效土层厚度、耕层厚度、土壤容重、土壤抗剪强度、土壤有机质、土壤渗透性可作为合理耕层评价最小数据集;坡耕地合理耕层适宜性分为5级,其诊断指标分级标准宜与土壤侵蚀分级和耕地地力分级衔接。4)坡耕地合理耕层评价未来应密切关注耕层质量诊断指标最小数据集、坡耕地合理耕层阈值/适宜值分级标准、坡耕地水土流失阻控标准拟定3个主要方向。研究可为深入认识坡耕地侵蚀性退化机制,辨识坡耕地合理耕层调控途径以及坡耕地合理耕层构建技术参数提供依据。

土壤;侵蚀;有机质;坡耕地;耕层质量;退化作用;合理耕层;诊断指标

0 引 言

坡耕地是中国主要耕地资源类型,可占全国耕地面积35.09%;西南区是中国坡耕地分布最为集中地区,大于15°坡耕地为该地区坡耕地79.28%[1],坡耕地在未来相当时期内仍然是中国重要粮食和农产品生产基地。耕层指在自然土壤基础上,经过人类长期的耕作、施肥、灌溉等活动及自然因素的持续作用形成的农业耕作土壤,它包括耕作层(表土层)、犁底层、心土层和底土层[2];坡耕地合理耕层指一定耕作制度下,可持续维持农作物正常生长且能实现侵蚀控制双重目标的坡耕地耕层土壤质量基准(benchmark),采用在地块尺度上可综合反映土壤生产力过程和土壤侵蚀控制的土壤属性(或多)指标表征[3]。国内外对坡耕地“土壤侵蚀—土壤质量—土地生产力”相关研究主要集中在坡面侵蚀土壤退化途径及评价指标[4-5]、土壤侵蚀对土壤质量退化影响[6-7]、土壤侵蚀与土地生产力及农作物产量侵蚀响应的(erosion-productivity impact calculator,EPIC)模型、土壤生产力指数(productivity index,PI)模型和土壤侵蚀可持续模型(an expertsystem/neural network model,ImpelERO)[8-11]等方面。美国农业部(land evaluation and site assessment, LESA)系统规定,当用于耕地保护目的时,LE与SA权重比为1:2[12];中国农业部地力评价系统包括气候、立地条件、剖面性状、耕层理化性质、土壤养分状况、障碍因素、土壤管理7类共64项指标[13],上述2类评价体系都包含了诸多土壤自然物理、化学指标和人为耕作活动指标。本文在水蚀区坡耕地主要生态过程分析基础上,综合分析了土壤侵蚀对坡耕地耕层土壤性质、土壤质量、土壤生产力退化作用影响,总结了侵蚀条件下坡耕地耕层质量评价指标及方法,讨论了坡耕地合理耕层评价指标及程度分级思路,从坡耕地土壤侵蚀机理、农作物产量水土保持原理的视角,提出未来侵蚀条件下坡耕地合理耕层评价应密切关注的3个问题。

1 水蚀区坡耕地主要生态过程分析

1.1 耕层及耕层质量

农业耕作土壤在人为熟化过程和自然因素继续作用下所形成的层次结构是其主要标志,在深、浅耕条件其耕层结构与自然土壤层次发育特征如下所示(图1a),在耕深30~40 cm条件下,活动层(0~40 cm)关系作物前期生长,稳定层(30~40 cm)关系作物后期生长,>40~50 cm以下一般不做翻耕处理[2]。耕层是人类为了栽培作物,利用工具对土壤进行扰动的深度层,旱作土壤耕层的表土层(0~15 cm)、稳定层(>15~35 cm)、心土层(>35~60 cm)和犁底层(耕层与心土层之间)组合特征对作物根系和产量具有重要意义;稳定层也称根系活跃层,与表土层共同组成耕层,而犁底层一般存在于耕层和心土层之间[14]。在深松条件下耕作土壤剖面构型可分为活动层、稳定层、保证层(图1b),耕作层又分为表土层(0~15 cm)和犁底层(>15~20 cm),心土层(>20~40 cm)养分水分因素比较稳定,可供作物后期生长的需求,而底土层(>40 cm)对农作物产量形成几乎没有调控作用[3,14]。深松技术通过改善耕层剖面构型、改良土壤结构性能,实现耕层土壤蓄水保土保肥效应,以获得农作物高产稳产。

图1 耕层土壤剖面构型分析

根据以上分析,坡耕地耕层质量指沿土壤剖面农作物80%~90%根系活动层及其下层的土壤质量特性、垂直组合状况及其坡面立地条件,耕层质量与土壤质量内涵有重合之处;而从农学角度土壤质量被定义为土壤生产力,包括土壤供作物生长内在能力以及受土地利用类型和土壤管理措施影响的土壤质量动态2个方面,土壤生产力和适宜性是土壤质量主要内容[15]。由此可见,耕层质量指沿土壤剖面农作物根系活动层及其下层的土壤质量特性、垂直组合状况及其坡面立地条件,坡耕地耕层剖面构型指土壤质地、容重、孔隙度、机械阻力在土壤垂直层次分布特征,对于特定耕层构型而言,耕层厚度、土壤容重、土壤有机质、土壤有效厚度等土壤属性参数的垂直分布及组合特征是影响耕层质量、水分库、养分库容量的关键因素。

1.2 坡耕地耕层生态过程

水蚀区坡耕地耕层生产能力是在自然因素和人为因素综合作用下形成,根据生产力形成要素来源,分为自然因素(降雨、光热、母质)和人为因素(种植制度、耕作活动、土壤管理);根据调控程度,分为可调控管理因素(种植制度、土壤管理等)和不可调控自然因素(降雨、光热、母质等),在地块尺度,各种自然因素和管理因素对坡耕地“农作物—土壤”系统的作用表现如图2。由图可见,在水蚀区土壤侵蚀对坡耕地地块具有off-site和on-site 2种效应,前者表现为坡耕地土壤侵蚀量、径流损失和面源污染现象由地块-集水区-小流域逐级汇流现象,对周边生态环境安全造成潜在威胁;而后者则表现为耕层土壤侵蚀性退化和土地生产力下降现象,直接影响农作物产量、品质及区域粮食安全。坡耕地农业耕作活动具有周期性特点,根据典型种植制度农作物生长过程,采用耕作机械对地块土壤进行播种、中耕、除草、施肥、收获等农业活动,对土壤扰动深度在5~30 cm不等[3];同时农作物收获会使得坡耕地地面覆盖度发生急剧变化,在侵蚀性次降雨条件下,则是中、强度土壤侵蚀发生的潜在危险期,因此构建坡耕地合理耕层,应着重从加深耕层恢复地力、蓄水保墒防止径流和保护土壤提高产量角度进行调控[16]。

图2 地块尺度农业活动对坡耕地耕层生态的影响过程

根据图2对水蚀区坡耕地在年内(农业周期内)自然因素和人为因素作用过程综合分析可知,坡耕地耕层生态过程具有具有以下特征:

1)坡耕地耕层生态过程发生在农作物-土壤下垫面及耕层土体内部,由地块尺度农作物-耕层耦合效应决定土壤生产能力、坡耕地水土流失特征及耕层侵蚀性退化方向及程度。农作物-土壤下垫面表层生态过程主要有次降雨引起的自然干湿交替过程、地表覆盖快速变化过程以及地表径流冲刷过程,耕层土体内部生态过程主要有成土过程、根系生长过程及固土抗蚀过程,上述坡耕地生态过程的自然影响因素有降雨量、微地形(坡度、坡长、坡向、坡型)、土壤抗侵蚀性能,人为因素有坡面水系分布、地块破碎化程度、耕作活动方式等,而对三峡库区紫色土坡地而言,人类耕作措施不当和种植制度不合理是其坡耕地土壤退化主要驱动力[17]。

2)坡耕地耕层生态过程具有时空尺度特征。坡耕地耕层厚度及其土壤属性变化由降雨侵蚀、耕作过程、成土过程综合作用的生态过程决定,耕作活动时间尺度为农作物种植周期,空间尺度为地块;水蚀过程的时间尺度为次降雨,在空间尺度上存在由地块—集水区逐级汇流汇沙现象;坡耕地耕层质量变化具有明显的水蚀对耕作扰动的累积效应南方坡耕地水土保持以“保土排水”原理布置工程措施、耕作措施,而北方坡耕地以“保土保水”原理布置各项水土保持措施。

3)从坡耕地水土流失阻控角度,一年多熟制的坡耕地农业生产可分为侵蚀期和非侵蚀期2个阶段,侵蚀期耕层调控目标兼顾土壤抗侵蚀性能和土壤生产性能,非侵蚀期耕层调控目标以土壤生产性能为主导。在坡耕地水土资源承载力前提下,调整坡耕地一元种植模式为粮经二元种植模式,增加多年生农作物种植比例,主动选择可避开降雨侵蚀力集中分布期的典型种植制度,均是水土保持效应明显的坡耕地持续利用模式。

4)在地块尺度,农户(农场)水土保持行为对坡耕地耕层生态过程影响很大。单位土壤侵蚀厚度引起的土壤生产力下降水平,是引导农民实施土壤管理措施的主要驱动力[3],可调控的人为因素有耕作措施、土壤管理措施,坡面径流调控工程,农作物产量、品质和市场价格将决定农户采取水土保持措施种类及水平,进而对坡耕地耕层质量保持年限和水平造成影响。

2 土壤侵蚀对坡耕地耕层质量退化驱动作用及评价

坡耕地耕层质量涉及耕层结构及功能2个方面,前者指耕层土壤理化性质、剖面构型与土壤质量指数关系,后者指土壤理化性质与作物产量及土壤生产力指数关系。国内外对坡耕地侵蚀土壤退化类型及过程、土壤生产力与侵蚀土壤理化性质关系都进行了大量研究,土壤侵蚀对土壤性质及土壤质量劣化作用最为深入,而土壤侵蚀对土壤性质与土壤生产力衰退作用也有大量工作。

2.1 土壤侵蚀对坡耕地土壤质量劣化作用

水蚀区土壤侵蚀是造成坡耕地耕层质量退化的主要驱动因素,由于自然侵蚀条件不可控性及坡耕地农业生产长周期性特点,铲土侵蚀模拟法广泛地应用于坡耕地土壤性质及土壤质量与土地生产力衰退作用中。国内外土壤侵蚀与土壤质量相关研究主要集中在:1)土壤侵蚀对坡耕地退化影响直接表现在坡面耕层变薄、土壤物理、化学及生物性质恶化和土地产力下降等,而土壤物理性质和结构性质变化与侵蚀程度最为密切。土壤物理性质退化增加了其水蚀敏感性,对水蚀抗性较高土壤集中表现为较低土壤渗透阻力、体积密度、砂粒含量以及较高抗剪强度、液压电导率、渗透率、有机质含量和黏粒含量等[18];而加拿大、中国和德国对比研究表明,土壤团聚体结构、大小是直观诊断可靠指标,土壤物理性质与产量和土壤团聚体诊断值高度相关但有明显区域性差异,不利土壤结构表现为较高土壤干容重、土壤强度及较低入渗率[19]。2)侵蚀土壤退化形式与类型,杨艳生认为[20]退化形式表现为土壤环境劣化、土壤剖面形态毁损、各肥力要素间调节功能减弱并最终造成生产力下降或自然肥力消失过程;何毓蓉认为[21]四川盆地紫色土退化类型分为土壤物理性退化、土壤构造性退化和土壤营养性退化,退化紫色土具有粗骨性、易蚀性、易旱性特征;土壤侵蚀退化机理可分为土壤薄层化过程、土壤养分循环失衡、土壤性质劣化和贫瘠化、土壤砂质化和砾质化4个方面[22]。3)侵蚀土壤退化驱动力及调控,史志华等认为[23]土地利用方式及管理措施是影响红壤土壤质量演变方向和强度的关键因素,有效土层厚度、耕层土壤质地、土壤剖面构型等可用于表征鄂南红壤土壤质量变化;施用生物炭可增加紫色土坡耕地耕层土壤有效持水量、提高土壤导水率,有利于作物抗旱和水分入渗,减少地表径流和侵蚀发生[24];添加1%生物炭对黄绵土耕层土壤可产生减流减沙作用,提高土壤入渗能力和持水性能,改善土壤可蚀性[25];在以色列对2种易蚀性土壤的生物炭试验表明,生物炭通过降低土壤容重、增加持水能力和土壤渗透率而减少径流和土壤侵蚀,是土壤保持有效途径[26]。

2.2 土壤侵蚀对坡耕地土地生产力衰退作用

坡耕地土地生产力多采用农作物产量高低表示,也有采用土壤生产力指数表示,前者侧重侵蚀条件下农作物产量与影响因素关系,后者侧重坡耕地地块对农作物根系生长适宜程度;目前坡耕地土壤侵蚀与土地生产力研究中,多侧重在不同侵蚀程度和恢复措施下农作物减产速率、产量变化趋势以及定量分析不同因素对产量变化贡献率,集中在:

1)对于农作物产量衰退试验研究表明,土壤侵蚀可使土壤水分有效性下降而导致农作物产量降低且当降雨量低于平均水平年时,对重度侵蚀水平土地生产力影响较大[27];Francis等[28]在加拿大采取铲土0、5、10、15、20 cm以及施N+P肥、覆盖表土等恢复措施的侵蚀模拟法定量研究了土壤侵蚀对土壤质量、土壤生产力的影响,Oyedele等[29]在尼日利亚采取人为铲土0~20 cm方法模拟在不同侵蚀程度条件下,侵蚀土壤理化性质对作物产量影响的贡献率。中国则采用铲土侵蚀模拟小区或侵蚀模拟盆栽法,在不同区域开展了土壤侵蚀对作物产量影响定量研究,如陈奇伯等[30]采用侵蚀模拟小区法对比研究了黄土高原区和干热河谷区土壤侵蚀对坡耕地土地生产力衰退影响;王志强等[31]在黑土区研究了模拟侵蚀0、10、20、30、40、50、60、70 cm小区条件下,坡耕地在施肥、不施肥条件下土壤侵蚀对土地生产力影响;Zhao等[32]采用侵蚀模拟小区和盆栽试验,发现紫色丘陵区农作物产量下降速率与铲土厚度(侵蚀程度)关系;刘慧等[33]基于人为剥离表土模拟不同侵蚀程度的耕层土壤的盆栽试验,分析土壤侵蚀厚度对土壤理化性质、大豆生物性状和水分利用效率等的影响。

2)在土壤生产力衰退模型研究方面,土壤侵蚀与土地生产力模型(EPIC)基于作物生理参数和USLE模型表征土壤侵蚀与作物产量复杂关系,但在应用时需要大量前期资料,否则准确性较差[34];Pierce等[35]采用PI模型重点分析土壤持水量、容重与pH值等土壤指标对作物根系生长适应性,在世界各地土壤生产力评价[36]、侵蚀对土壤脆弱性及土壤生产力影响评价[37-38]方面广泛应用,也有基于人工剥离熟土层模拟不同侵蚀程度的盆栽试验结果,采用 PI模型对比了施肥、表土覆盖对侵蚀土壤生产力恢复水平[39]。

3)对于水蚀-农作物-土壤生境系统分析,土壤脆弱性对作物生长及环境影响极为重要,土壤侵蚀通过影响土壤性质和土壤厚度而造成土壤生产力下降,PI可作为土壤允许流失量标准,与土壤侵蚀风险指数(erosion risk index,ERI)共同用于土壤保护;而基于土壤生产力或基于环境保护,可辨识出随耕作、肥料、水分管理而变化的敏感指标集,为防止土壤质量恶化提供预警;ImpelERO可用于评价土壤侵蚀脆弱性(敏感性)并分析流失土层厚度对作物产量影响[40-42]。紫色土坡耕地作物产量随侵蚀土壤厚度(侵蚀程度)呈指数增加且单位侵蚀厚度(10 cm)作物产量下降率最大可达10.5%,60 cm土层厚度可作为紫色土坡地生产力临界土层厚度[43];紫色土坡耕地农作物与耕层适宜性存在协调发展类和失调衰退类两种状态和同步型、滞后型、损益型、共损型4种表现;在同样地力条件下,农作物产量较坡耕地耕层质量更为敏感,衰退表现更加明显[44]。综合以上分析可知,土壤厚度、土壤黏粒含量和有机质临界水平是引起坡耕地土壤生产力变化的关键因素,土壤渗透性与土壤侵蚀敏感性直接关系到坡耕地生产力持续、稳定。

2.3 侵蚀条件下坡耕地土壤质量评价

土壤质量评价多以土壤功能维护与保持为目标筛选评价指标,在耕地质量评价中多以作物产量或作物适宜性为目标,采用主成分分析、加权和法、加权综合法等数学方法筛选关键指标并构建土壤质量指数。集中在:1)由土壤功能导向的土壤质量评价指标选择,冷疏影[45]提出采用包含土壤质地、酸碱度、氮、磷、钾、有机质含量、侵蚀状况、盐渍化程度在内的土壤有效系数反映农地土壤农业生产潜力;国外研究表明,与侵蚀最为相关的土壤物理指标有土壤渗透、水力传导、切变强度和团聚体稳定性[46];土壤肥力低、碎石含量高、有效土层浅是尼日利亚耕地主要限制因素[47];基于土壤根系发育、蓄水和养分供应3个功能的土壤质量评价可很好指导巴西向日葵种植[48],土壤贯入阻力、土壤容重、土壤透气性及最小水分限制范围对作物生长很重要,可据此确定苏格兰耕作适宜性下限范围[49];土壤有机碳、粉粒+黏粒含量、pH、土壤阳离子交换量(cation exchange content,CEC)、土壤厚度和坡度作为德国农地土壤恢复性指标[50]。2)在侵蚀土壤质量评价方面,史德明等[5]提出采用土壤属性评估法可很好地反映南方侵蚀土壤退化现状、过程及其对土地生产力影响,退化指标必须准确地反映土壤剖面被剥蚀厚度或残留厚度;在黄土高原,许明祥等[51-52]认为土壤有机质、土壤抗冲性8项指标可很好反映侵蚀土壤质量,加权综合法可敏感地反映出土地利用变化对侵蚀土壤质量影响;郑粉莉等[53]采用土壤有机碳、毛管孔隙度、物理性黏粒等8个指标定量评价子午岭近100 a来侵蚀环境下农地土壤质量退化过程;基于“压力—状态—响应(pressure-status-response,PSR)”模式,在地块和小流域尺度建立了针对土壤侵蚀退化的土地质量评价指标体系[54];因子分析法和判别分析可以识别对土壤侵蚀和土地利用最为敏感的土壤质量指标[55]。3)土壤质量评价最小数据集提出,可解决由于土壤理化性质时空变异性大所致的土壤指标指示作用稳定性变差、数据获取成本高的问题,Mohammad等[56]以爱尔兰耕地和草场样地进行对比,分析土壤结构对总体土壤质量的贡献率,采用主成分分析确定土壤质量评价最小数据集minimum dataset,MDS);李桂林等[57]利用多元方差分析、主成分定量评价了土地利用方式和种植年限对土壤质量影响程度,确定了城市周边2种土壤类型的MDS。Bram等[58]基于长期耕作、残茬和轮作管理评价建立了墨西哥土壤质量评价最小数据集,物理指标有团聚体稳定性、永久萎蔫点、土壤渗透性等,化学指标有土壤有机质、N、P等,认为优良土壤质量代表高持续性生产力和无明显土壤或环境退化现象;而1个包括土壤主要功能作用(土壤水分入渗、储存和供应能力,养分储存、供应和循环能力,持续生物活性)的最小指标集可为土地管理提供有价值土壤质量信息[59]。

侵蚀土壤质量评价多采用土壤属性评价法、土壤生产力评价、农作物-土壤耦合度评价,评价尺度有地块、小流域和区域尺度,指标筛选手段也由定性逻辑分析到定量数理化取舍。诊断指标最小数据集是土壤质量特征评价、措施调控的科学方法。从坡耕地水土流失阻控及坡耕地农业生产过程来看,坡耕地坡度、土壤层厚度、土壤有机质可作为侵蚀条件下耕层质量诊断的关键指标,土壤容重、土壤饱和导水率可作为诊断辅助指标;土壤层厚度可分为流失厚度、耕层厚度、有效土层厚度3个指标,分别反映了坡耕地土壤侵蚀程度、农作物水分库、养分库容量特征。根据坡耕地耕层质量相关研究[3,20,31,33,36,43,50,52,60-65],建立了坡耕地耕层质量诊断指标中耕层厚度、有效土层厚度、有机质的侵蚀、生产性能对应表(表1)。

表1 侵蚀条件下坡耕地耕层质量诊断指标分级

注:流失厚度指标按土壤容重1.35 g·cm-3计算。侵蚀程度分级参考文献[60]。

Note: Erosion thickness is calculated based on soil bulk density of 1.35 g·cm-3. Degree of erosion is classified base on reference[60].

3 趋势展望

目前在土壤侵蚀对坡面理化性质及土地生产力影响、耕地土壤质量评价方面已有完善评价体系,但集合土壤侵蚀视角和土壤生产维持功能视角的量化评价仍需探索。坡耕地既是山区丘陵区主要农业生产单元,也是严重水土流失单元;因此从坡耕地水土流失有效防治目标看[3,5,11,14,36,42,61,66-67],坡耕地耕层质量评价应密切关注耕层土壤抗侵蚀性能和土壤生产性能2个功能,从“土壤侵蚀-质量退化-改善恢复”系统性角度及坡耕地农业生产关键生态过程(图2),未来水蚀区坡耕地耕层质量可在以下3个方面加强和突破(图3)。

注:MDS为最小数据集。

1)坡耕地耕层质量诊断指标最小数据集:针对不同水蚀区坡耕地典型耕作制度,整合或建立现有坡耕地侵蚀序列定位及模拟研究中耕层土壤理化性质变化为基本数据源,深入分析表征坡耕地耕层侵蚀性能与生产性能指标的生态过程/驱动机制,揭示侵蚀条件下坡耕地耕层质量主控过程、退化机理;基于坡耕地侵蚀控制和生产功能双重目标,筛选耕层土壤理化性质与剖面特征参数,确定能够科学反映土壤生产力形成和侵蚀风险控制的坡耕地耕层质量诊断最小数据集是坡耕地合理耕层指标体系建立的重要方向。

2)坡耕地合理耕层阈值分析/适宜值:坡耕地合理耕层诊断宜在地块尺度、耕作制度种植年、以耕层土壤指标及其立地条件为原则;以坡耕地中产稳产的产量为依据,从坡耕地典型耕作制度在侵蚀条件下土壤生产力形成主要限制因素及其临界水平,定量确定紫色土坡耕地合理耕层标准、阈值;建立坡耕地侵蚀等级和地力等级对应关系,以侵蚀控制和农作物根系适宜土层深度划分合理耕层等级;根据降雨侵蚀危险期和农作物生长周期性,坡耕地耕层质量最小数据集诊断指标阈值/适宜值应充分考虑其时间响应特征。

3)基于MDS的坡耕地水土流失阻控标准拟定:在坡耕地“压力(土壤侵蚀)—状态(耕层质量)—响应(土壤管理)”框架下,分析坡耕地耕层质量主控过程、障碍因素及恢复机制,揭示水蚀和土壤管理措施对坡耕地耕层质量的交互作用、调控机制和优先序;在坡耕地水土流失防治的土壤流失量、径流系数、土壤允许流失量指标基础上,增加坡耕地耕层质量诊断MDS指标(如土壤有机质、土壤入渗性、土壤黏粒含量),为坡耕地区域性治理标准拟订提供量化预警监测,实现水蚀区坡耕地水土资源高效利用、粮食安全及生态安全。

4 结 论

1)坡耕地耕层生态过程发生在农作物-土壤下垫面及耕层土体剖面,耕层生态过程具有时空尺度特征;坡耕地耕层厚度及其土壤属性变化由降雨侵蚀、耕作过程、成土过程综合作用的生态过程决定,由地块尺度农作物-耕层耦合效应决定土壤生产能力、坡耕地水土流失特征及耕层侵蚀性退化方向及程度。

2)耕层质量指沿土壤剖面农作物根系活动层及其下层的土壤质量特性、垂直组合状况及其坡面立地条件,坡耕地耕层剖面构型指土壤质地、容重、孔隙度、机械阻力在土壤垂直层次分布特征,坡耕地耕层质量变化具有明显的水蚀对耕作扰动的累积效应。

3)土壤侵蚀对坡耕地退化影响直接表现在坡面耕层变薄、土壤物理化性质及生物性质恶化和土地产力下降等,而土壤物理性质和结构性质变化与侵蚀程度关系最为密切;土壤厚度、土壤黏粒含量和有机质临界水平是引起坡耕地土壤生产力变化的关键因素,土壤渗透性与土壤侵蚀敏感性直接关系到坡耕地生产力持续、稳定。

4)在中国主要水蚀区,应针对典型坡耕地土壤类型及耕作制度,建立统一的坡耕地耕层质量评价最小数据集;从坡耕地水土流失有效阻控及坡耕地农业生产持续稳定来看,坡耕地坡度、土壤层厚度、土壤有机质可作为侵蚀条件下耕层质量诊断的关键指标,土壤容重、土壤饱和导水率可作为诊断辅助指标。

[1] 谢俊齐,唐程杰,李宪文,等. 中国坡耕地[M]. 北京:中国大地出版社,2005.

[2] 陈恩风. 农业土壤的成因、熟化、耕翻深度与层次发育[J].中国农业科学,1961(12):1-6.

Chen Enfeng. Causes of maturation and development of tilling depth and gradation of agricultural soil[J]. Scientia Agricultura Sinica, 1961(12): 1-6. (in Chinese with English abstract)

[3] 史东梅,蒋光毅,蒋平,等. 土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响[J]. 农业工程学报,2017,33(13):270-279.

Shi Dongmei, Jiang Guangyi, Jiang Ping, et al. Effects of soil erosion factors on cultivated-layer quality of slope farmland in purple hilly area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 270-279. (in Chinese with English abstract)

[4] National Soil Erosion-Soil Productivity Research Planning Committee. Soil erosion effects on soil productivity: A research perspective[J]. Journal of Soil and Water Conservation, 1981, 36(2): 82-90.

[5] 史德明,韦启潘,梁音,等. 中国南方侵蚀土壤退化指标体系研究[J]. 水土保持学报,2000,14(3):1-9.

Shi Deming, Wei Qipan, Liang Yin, et al. Study on degradation index system of eroded soils in Southern China[J]. Journal of Soil and Water Conservation, 2000, 14(3): 1-9. (in Chinese with English abstract)

[6] 史衍玺. 人为开垦加速侵蚀下土壤质量演变及其机理研究[D]. 杨凌:中国科学院西北水土保持研究所,1998.

[7] Lal R, Ahmandi M, Bajracharya R M. Erosional impacts on soil properties and corn yield on alfisols in central Ohio[J]. Land Degradation & development, 2000, 11: 575-585.

[8] Williams J R, Renard K G, Dyke P T. EPIC: A new method for assessing erosion effects on soil productivity[J]. Journal of Soil and Water Conservation,1983, 38(5): 381-383.

[9] 李军,邵明安,张兴昌,等. 黄土高原地区EPIC模型数据库组建[J]. 西北农林科技大学学报:自然科学版,2004,32(8):21-26.

Li Jun, Shao Ming'an, Zhang Xingchang, et al. Database construction for the EPIC model on the Loess Plateau region[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(8): 21-26. (in Chinese with English abstract)

[10] Neill L L. An Evaluation of Soil Productivity Based on Root Growth and Water Depletion[D]. Columbia:University of Missouri, 1979.

[11] Ddela R, Moreno J A, Mayol F, et al. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model[J]. Agriculture Ecosystems & Environment, 2000, 81(3): 179-190.

[12] James R Pease, Robert E Coughlin. Land Evaluation and Site Assessment: A guidebook for Rating Agricultural Lands, Second Edition[M]. Ankeny, Iowa: Soil and Water Conservation Society, 2000.

[13] 全国农业技术推广服务中心. 耕地地力评价指南[M]. 北京:中国农业科学技术出版社,2006:14-18

[14] 韩晓增,邹文秀,陆欣春,等. 旱作土壤耕层及其肥力培育途径[J]. 土壤与作物,2015,4(4):145-150.

Han Xiaozeng, Zou Wenxiu, Lu Xinchun, et al. The soil cultivated layer in dryland and technical patterns in cultivating soil fertility[J]. Soil and Crop, 2015, 4(4): 145-150. (in Chinese with English abstract)

[15] 刘世梁,傅伯杰,刘国华,等. 我国土壤质量及其评价研究的进展[J]. 土壤通报,2006,37(1):137-143.

Liu Shiliang, Fu Bojie, Liu Guohua, et al. Research review of quantitative evaluation of soil quality in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 137-143. (in Chinese with English abstract)

[16] 郑洪兵,齐华,刘武仁,等. 玉米农田耕层现状、存在问题及合理耕层构建探讨[J]. 耕作与栽培,2014,52(5):39-42.

Zheng Hongbing, Qi Hua, Liu Wuren, et al. Present and problem of tillage layer of maize cropland and discussion of optimum tillage layer[J]. Tillage and Cultivation, 2014, 52(5): 39-42. (in Chinese with English abstract)

[17] 董杰,段艺芳,许玉凤,等. 三峡库区紫色土坡地土壤退化程度评价及驱动机制[J]. 水土保持通报,2009,29(4):51-56.

Dong Jie, Duan Yifang, Xu Yufeng, et al. Evaluation and driving mechanism of land degradation in a sloping field of Purple soil in Three Gorges reservoir area[J]. Bulletin of Soil and Water Conservation, 2009, 29(4): 51-56. (in Chinese with English abstract)

[18] Ilan Stavi, Rattan Lal. Variability of soil physical quality and erodibility in a water-eroded cropland[J]. Catena, 2011, 84: 148-155.

[19] Lothar Mueller, Bev D Kay, Chunsheng Huc, et al. Visual assessment of soil structure: Evaluation of methodologies on sites in Canada, China and Germany Part I: Comparing visual methods and linking them with soil physical data and grain yield of cereals[J]. Soil & Tillage Research, 2009, 103: 178-187.

[20] 杨艳生. 第四纪红粘土区侵蚀土壤退化机理研究[J]. 水土保持研究,1997,4(1):100-108.

Yang Yansheng. Research on soil degradation mechanism in the quaternary red clay area[J]. Research of Soil and Water Conservation | Res Soil Water Conserv, 1997, 4(1): 100-108. (in Chinese with English abstract)

[21] 何毓蓉.中国紫色土:II[M]. 北京:科学出版社,2003:2-11,43-45,398-404.

[22] 程冬兵,蔡崇法,左长清. 土壤侵蚀退化研究[J]. 水土保护研究,2006,13(5):252-254.

Cheng Dongbing, Cai Chongfa, Zuo Changqing, et al. Advances in research of soil degradation by erosion[J]. Soil and Water Conservation Research, 2006, 13(5): 252-254. (in Chinese with English abstract)

[23] 史志华,蔡崇法,王天巍,等. 红壤丘陵区土地利用变化对土壤质量影响[J]. 长江流域资源与环境,2001,10(6):537-543.

Shi Zhihua, Cai Chongfa, Wang Tianwei, et al. In flueece of land use changes on soil quality in hilly region of red soil[J]. Resourceses and Environment in the Yangtze Basin, 2001, 10(6): 537-543. (in Chinese with English abstract)

[24] 王红兰,唐翔宇,张维,等. 施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响[J]. 农业工程学报,2015,31(4):107-112.

Wang Honglan, Tang Xiangyu, Zhang Wei, et al. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 107-112. (in Chinese with English abstract)

[25] 吴媛媛,杨明义,张风宝,等. 添加生物炭对黄绵土耕层土壤可蚀性的影响[J]. 土壤学报,2016,53(1):77-88.

Wu Yuanyuan, Yang Mingyi, Zhang Fengbao, et al. Effect of biochar addition on erodibility of loess soil[J]. Acta Pedologica Sinica, 2016, 53(1): 77-88. (in Chinese with English abstract)

[26] Vikas Abrol, Meni Ben-Hur, Frank G A. Verheijen, et al. Biochar effects on soil water infiltration and erosion under seal formation conditions: Rainfall simulation experiment[J]. J Soils Sediments, 2016, 16: 2709-2719.

[27] Arriaga F J, Lowery B. Corn production on an eroded soil: Effects of total rainfall and soil water storage[J]. Soil & Tillage Research, 2003, 71: 87-93.

[28] Francis J Larney, Henry H Janzen,Barry M Olson,et al. Soil quality and productivity responses to simulated erosion and restorative amendments[J].Canadian Journal of Soil Science, 2000, 80: 515-522.

[29] Oyedele D J, Aina P O. Response of soil properties and maize yield to simulated erosion by artificial topsoil removal[J]. Plant and Soil, 2006, 284: 375-384.

[30] 陈奇伯,王克勤,齐实,等. 不同生态脆弱区土壤侵蚀对土地生产力影响对比研究[J]. 水土保持通报,2005,25(3):29-32.

Chen Qibo, Wang Keqin, Qi Shi, et al. Soil erosion and its relations to slope field productivity in hilly gully area of loess plateau and dry-hot valley of Jinshajiang river[J]. Bulletin of Soil and Water Conservation, 2005, 25(3): 29-32. (in Chinese with English abstract)

[31] 王志强,刘宝元,王旭艳,等. 东北黑土区土壤侵蚀对土地生产力影响试验研究[J]. 中国科学D辑:地球科学,2009,39(10):1397-1412.

Wang Zhiqiang, Liu Baoyuan, Wang Xuyan, et al. Erosion effect on the productivity of black soil in Northeast China[J]. Sci China Ser D-Earth Sci, 2009, 39(10): 1397-1412. (in Chinese with English abstract)

[32] Zhao Li, Jin Jie, Du Shuhan, et al. A quantification of the effects of erosion on the productivity of purple soils[J]. Journal of Mountain Science, 2012, 9: 96-104.

[33] 刘慧,魏永霞. 黑土区土壤侵蚀厚度对土地生产力的影响及其评价[J]. 农业工程学报,2014,30(20):288-296..

Liu Hui, Wei Yongxia. Influence of soil erosion thickness on soil productivity of black soil and its evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 288-296. (in Chinese with English abstract)

[34] Lothar Mueller, Bev D Kay, Bill Deen, et al. Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany[J]. Soil & Tillage Research, 2009, 103(1): 188-196.

[35] Pierce F C, Larson W E, Dowdy R H, et al. Graham. 1983. Productivity of soils: Assessing long-term changes due to erosion[J]. Journal of Soil and Water Conservation. 1983, 38: 39-44.

[36] 孙振宁,谢云,段兴武. 生产力指数模型PI在北方土壤生产力评价中的应用[J]. 自然资源学报,2009,24(4):708-718.

Sun Zhenning, Xie Yun, Duan Xingwu. Applied productivity index model(PI) in soil productivity assessment of northern China[J]. Journal of Natural Resources, 2009, 24(4): 708-718. (in Chinese with English abstract)

[37] Martha M. Bakker, Gerard Goversb, Mark D A. Rounsevella. The crop productivity-erosion relationship: An analysis based on experimental work[J]. Catena, 2004, 57: 55-76.

[38] Duan Xingwu, Xie Yun, Ou Tinghai, et al. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China[J]. Catena, 2011, 87: 268-275.

[39] 成婧,吴光艳,云峰,等. 渭北旱塬侵蚀退化土壤生产力的恢复与评价[J]. 中国水土保持科学,2013,11(3):6-11.

Cheng Xie, Wu Guangyan, Yun Feng, et al. Soil productivity restoration and evaluation of erosion degradation in Weibei dry highland[J]. Science of Soil and Water Conservation, 2013, 11(3): 6-11. (in Chinese with English abstract)

[40] Deyanira Lobo,Zenaida Lozano,Fernando Delgado. Water erosion risk assessment and impact on productivity of a Venezuelan soil[J]. Catena, 2005, 64: 297-306.

[41] Debarati Bhaduri, Purakayastha T J. Long-term tillage, water and nutrient management in rice-wheat cropping system: Assessment and response of soil quality[J]. Soil & Tillage Research, 2014, 144(12): 83-95.

[42] de la Rosa D, Moreno J A, Mayol F, et al. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model[J]. Agriculture, Ecosystems and Environment, 2000, 81: 179-190.

[43] 朱波,况福虹,高美荣,等. 土层厚度对紫色土坡地生产力的影响[J]. 山地学报,2009,27(6):735-739.

Zhu Bo, Kuan Fuhong, Gao Meirong, et al. Effects of soil thicknesson productivity of sloping cropland of purple soil[J]. Journal of Mountain Science, 2009, 27(6): 735-739. (in Chinese with English abstract)

[44] 娄义宝,史东梅,金慧芳,等. 西南紫色土坡耕地农作物-耕层质量适宜性的耦合度诊断[J]. 中国农业科学,2019,52(4):661-675.

Lou Yibao, Shi Dongmei, Jin Huifang, et al. Coupling degree diagnosis on suitability evaluation of cultivated-layer quality for slope farmland in purple hilly region of south-western China[J]. Scientia Agricultura Sinica, 2019, 52(4): 661-675. (in Chinese with English abstract)

[45] 冷疏影. 地理信息系统支持下的中国农业生产潜力研究[J]. 自然资源学报,1992,7(1):71-79.

Leng Shuying. Research on the potential agricultural productivity of China with the help of GIS[J]. Journal of Natural Resources, 1992, 7(1): 71-79. (in Chinese with English abstract)

[46] Karlen D L, Eash N S, Unger P W. Soil and crop management effects on soil quality indicators[J]. American Journal of Alternative Agriculture, 1992, 7(7): 48-55.

[47] Oluwatosin G A, Adeyolanu O D, Ogunkunle A O, et al. From land capability classification to soil quality: An assessment[J]. Tropical and Subtropical Agroecosystems, 2006, 6: 49-55.

[48] Jairo Costa Fernandes, Carlos Antonio Gamero, Jose′ Guilherme Lanca Rodrigues, et al. Determination of the quality index of a Paleudult under sunflower culture and different management systems[J]. Soil & Tillage Research, 2011, 112: 167-174.

[49] Rachel Muylaert Locks Guimara, Bruce C Ball, Cassio Antonio Tormena, et al. Relating visual evaluation of soil structure to other physical properties in soils of contrasting texture and management[J]. Soil & Tillage Research, 2013, 127: 92-99.

[50] Jasmin Schiefera, Georg J Laira, Winfried E H. Blum. Indicators for the definition of land quality as a basis for the sustainable intensification of agricultural production[J]. International Soil and Water Conservation Research, 2015, 3: 42-49.

[51] 许明祥,刘国彬,赵允格.黄土丘陵区侵蚀土壤质量评价[J].植物营养与肥料学报,2005,11(3):285-293.

Xu Mingxiang, Liu Guobin, Zhao Yunge. Quality assessment of erosion soil on hilly Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 285-293. (in Chinese with English abstract)

[52] Xu M, Qiang L, Wilson G. Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the hilly Loess Plateau, China[J]. Soil & Tillage Research, 2016, 155: 9-18.

[53] 郑粉莉,张锋,王彬. 近100年植被破坏侵蚀环境下土壤质量退化过程的定量评价[J]. 生态学报,2010,30(22):6044-6051.

Zheng Fenli, Zhang Feng, Wang Bin. Quantifying soil quality degradation over 100 years after deforestation under erosional environments[J]. Acta Ecologica Sinica, 2010, 30(22): 6044-6051. (in Chinese with English abstract)

[54] 郭旭东,邱扬,连纲,等. 基于PSR框架,针对土壤侵蚀小流域的土地质量评价[J]. 生态学报,2004,24(9):1884-1894.

Guo Xudong, Qiu Yang, Liang Gang, et al. Land quality indictors based on “Press-State-Response” framework at catchment for soil degradation by water erosion[J]. Acta Ecologica Sinica, 2004, 24(9): 1884-1894. (in Chinese with English abstract)

[55] Kazem Nosrati. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques[J]. Environmental Monitoring & Assessment, 2013, 185(4): 2895-2907.

[56] Mohammad Sadegh Askari, Junfang Cui, Sharon M O’Rourke, et al. Evaluation of soil structural quality using VIS-NIR spectra[J]. Soil & Tillage Research, 2015, 146: 108-117.

[57] 李桂林,陈杰,檀满枝,等. 基于土地利用变化建立土壤质量评价最小数据集[J]. 土壤学报,2008,45(1):16-25.

Li Guilin, Chen Jie, Tan Manzhi, et al. Establishment of a minimum dataset for soil quality assessment based on land use change[J]. Acta Pedologica Sinica, 2008, 45(1): 16-25. (in Chinese with English abstract)

[58] Bram Govaerts, Ken D Sayre, Jozef Deckers. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico[J]. Soil & Tillage Research, 2006, 87: 163-174.

[59] Lima A C R, Brussaard L, Totolac M R, et al. A functional evaluation of three indicator sets for assessing soil quality[J]. Applied Soil Ecology, 2013, 64: 194-200.

[60] 中华人民共和国水利部. 土壤侵蚀分类分级标准:SL 190-2007[S]. 北京:中国标准出版社,2008.

[61] 苏正安,张建辉,聂小军. 紫色土坡耕地土壤物理性质空间变异对土壤侵蚀的响应[J]. 农业工程学报,2009,25(5):54-60.

Su Zheng'an, Zhang Jianhui, Nie Xiaojun. Response of spatial variability of soil physical properties to soil erosion in purple soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 54-60. (in Chinese with English abstract)

[62] Munkholm L J. Soil friability: A review of the concept, assessment and effects of soil properties and management[J]. Geoderma, 2011, 167/168(8): 236-246.

[63] Adélia N Nunes, António C de Almeida, Celeste O A Coelho. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal[J]. Applied Geography, 2011, 31: 687-699.

[64] 金慧芳,史东梅,陈正发,等. 基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标[J]. 农业工程学报,2018,34(7):155-164.

Jin Huifang, Shi Dongmei, Chen Zhengfa, et al. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 155-164. (in Chinese with English abstract)

[65] 马芊红,张光辉,耿韧,等我国水蚀区坡耕地土壤肥力现状分析[J]. 水土保持学报,2018,34(7):155-164.

Ma Qianhong, Zhang Guanghui, Gen Ren, et al. Present condition analysis of sloping farmland and soil fertility in the water erosion zone of China[J]. Journal of Soil and Water Conservation, 2018, 34(7): 155-164. (in Chinese with English abstract)

[66] Liu Gangcai, Li Lan, Wu Laosheng. Determination of Soil loss tolerance of an entisol in Southwest China[J/OL]. Soil Science Society of America Journal, 2009,73(2):412. DOI: 10.2136/sssaj2008.015

[67] Duan Xingguo, Shi Xiaoning, Li Yanbo, et al. A new method to calculate soil loss tolerance for sustainable soil productivity in farmland[J]. Agronomy for Sustainable Development, 2017, 37(1): 2.DOI: 10.1007/s13593-016-0409-3

Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend

Shi Dongmei1, Jin Huifang1, Jiang Guangyi2

(1.,,400715; 2.,401147,)

Soil erosion is the key driving force that causes tillage-layer quality degradation gradually and soil productivity variation precariously in sloping farmland. According to 2 functions of tillage-layer, erosion control and soil productivity, in this paper, we firstly focused on the ecological processes occurring in tillage-layer of farmland under the comprehensive interactions among soil erosion, soil and water conservation practices and agricultural activities at plot scale, and further summarized its influencing roads of soil erosion on tillage-layer qualityResults showed that: 1) Tillage-layer quality of sloping farmland was determined by the 2 ecological interaction process, rainfall erosion and tillage activities, and the temporal and spatial scales of these interaction on tillage-layer quality were very different. Soil properties functions indicating tillage-layer quality of slope farmland could be divided into such 4 types as water conservation, soil conservation, fertilizer conservation and production potential during a total agricultural production process. Crop-tillage coupling coordination could determine such characteristics of slope farmland as soil productivity, soil and water loss and the degradation direction & degree of tillage-layer caused by water erosion. 2) Tillage-layer quality was the characteristics of soil quality, its vertical combination along the active layer of crop root-system and underlying layer along the soil profile and the site conditions of sloping farmland. Tillage profile configuration of sloping farmland was the vertical distribution characteristics of soil texture, soil bulk density, soil porosity and soil mechanical resistance, so did its combination characteristics. The changes of tillage-layer quality of sloping farmland had obvious cumulative effects of water erosion on tillage disturbance. Degradation effects by water erosion on tillage-layer quality of sloping farmland were manifested in 3 aspects: deterioration of soil properties, deterioration of soil quality and decline of land productivity. The variation degree of soil physical properties was greater than that of chemical properties, and the decline of land productivity caused by runoff was greater than that caused by soil erosion. The change of crop yield had a significant hysteresis effect compared with soil quality degradation, meanwhile, soil permeability and soil erosion sensitivity had a direct correlation to the sustainable and stable productivity of sloping farmland. 3) In primary water erosion areas of China, an unified minimum data set of tillage-layer quality evaluation of sloping farmland should be set up aimed at the typical soil types and farming systems, which paid more close attention to the 2 functions of tillage-layer on erosion reduction and yield increase simultaneously. Such soil parameters as effective soil layer thickness, tillage layer thickness, soil bulk density, soil shear strength, soil organic matter and soil permeability could be included into the minimum data set for rational tillage-layer evaluation at plot scale. The time response characteristics of the minimum data set of tillage-layer quality should be fully taken into account in determining the threshold/suitable value. Rational tillage suitability of sloping farmland was divided into 5 grades, which were connected with soil erosion classification and cultivated land fertility classification. 4) Tillage-layer evaluation of slope farmland should focus on 3 aspects in the future, minimum data set of diagnosis index for tillage-layer quality, classification criteria of rational tillage threshold/suitable value and criterion of soil erosion control on sloping farmland. Accompanied by such normal indicators as soil erosion modulus, runoff coefficient and soil loss tolerance for protection of sloping farmland, the minimum data set index for diagnosing tillage-layer quality, as soil organic matter, soil infiltration, soil clay content could provide quantitatively a regional early-warning standards, which would benefit to more efficient soil and water loss control and realize sustainable utilization of sloping farmland These viewpoints were helpful in understanding the mechanism of degradation process caused by erosion of sloping farmland, and identifying quantitatively regulation approaches for rational cultivated-layer of sloping farmland, and also could provide some technical parameters for constructing rational tillage layer of slope farmland in water erosion area.

soils; erosion; organic matter;sloping farmland; tillage-layer quality; degradation effect; rational tillage-layer; diagnostic indicator

史东梅,金慧芳,蒋光毅. 土壤侵蚀对坡耕地耕层质量退化作用及其评价趋势展望[J]. 农业工程学报,2019,35(18):118-126.doi:10.11975/j.issn.1002-6819.2019.18.015 http://www.tcsae.org

Shi Dongmei, Jin Huifang, Jiang Guangyi. Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 118-126. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.015 http://www.tcsae.org

2019-07-19

2019-08-10

国家自然科学基金(41771310);公益性行业(农业)科研专项(201503119-01-01)

史东梅,博士,教授,博士生导师,主要从事水土生态工程、土壤侵蚀与水土保持研究。Email:shidm_1970@126.com

10.11975/j.issn.1002-6819.2019.18.015

S157.1

A

1002-6819(2019)-18-0118-09

猜你喜欢

坡耕地耕层土壤侵蚀
土地利用/覆被变化对东辽河流域土壤侵蚀的影响研究
喀斯特坡耕地块石出露对土壤水分入渗的影响
坡耕地治理助推西和县万寿菊产业发展
土壤侵蚀对紫色土坡耕地耕层障碍因素的影响*
陕西省汉江流域2000-2015年土壤侵蚀时空分异特征研究
轮作制度对敦化市土壤主要理化性状影响的研究
耕层构造对土壤三相比和春玉米根系形态的影响
红壤坡耕地耕层质量特征与障碍类型划分
岗托土壤侵蚀变化研究
基于GIS与RUSLE模型的毕节市土壤侵蚀动态变化