APP下载

氮磷添加对水曲柳化学计量特征和养分再吸收的影响

2019-10-09张新洁陆天宇孙海龙赵宏波

森林工程 2019年5期

张新洁 陆天宇 孙海龙 赵宏波

摘 要:为了解水曲柳林分化学计量特征和养分再吸收率与N、P元素供应的关系,以15年生水曲柳(Fraxinus mandshurica)人工林为研究对象,测定氮(N)、磷(P)添加后水曲柳林分土壤、成熟叶片和衰老叶片养分浓度的变化。结果表明:N、P添加后水曲柳成熟叶N、P浓度和土壤C、N浓度均逐渐增加,而衰老叶P浓度逐渐降低;水曲柳成熟叶C∶N、C∶P和土壤C∶P均随N、P添加而降低,而成熟叶和土壤N∶P仅随P添加而降低,但是衰老叶C∶P、N∶P均随P添加量增加而显著提高;N、P添加后水曲柳叶片N、P再吸收率均提高,其中P再吸收率变化最大,高氮和高磷处理下P再吸收率分别比CK提高2.3倍和2.7倍,且叶片P再吸收率与成熟叶C∶P呈显著负相关,但是与衰老叶C∶P、N∶P呈极显著正相关。N、P添加后水曲柳成熟叶N∶P的变化和N、P再吸收率的提高表明:P是限制本研究中水曲柳林木生长的重要因素,N、P添加可以提高水曲柳N、P的利用效率,并改善水曲柳林分的养分状况。

关键词:水曲柳;氮磷添加;化学计量比;养分再吸收率

中图分类号:S725.5    文献标识码:A   文章编号:1006-8023(2019)05-0016-06

Abstract:In order to understand the relation between nutrient stoichiometric characteristics and resorption efficiency of Fraxinus mandshurica stand and the N and P supply, N and P concentrations of soils and leaves were determined in the 15-year-old Fraxinus mandshurica plantations after N and P addition. The results showed that: with the increasing of N and P supply, the N and P concentrations of mature leaves and the C and N concentrations of soil increased, while the P concentration of senescent leaves gradually decreased. The C∶N and C∶P ratios of mature leaves and C∶P ratio of soils decreased under N and P addition, and N∶P ratio of mature leaves and soils decreased under P addition, but C∶P and N∶P ratios of senescent leaves increased significantly with the increasing P supply. It showed high resorption efficiency of N and P in leaves under N and P addition, and among them P resorption efficiency were higher. The P resorption efficiency under high nitrogen and high phosphorus treatment increased by 2.3 times and 2.7 times of CK, respectively, and the leaf P resorption efficiency and mature leaf C∶P showed a significantly negative correlation, but it was significantly positively correlated with senescent leaves C∶P, N∶P. Our study indicates that N and P addition can adjust N∶P ratios of mature leaves and increase N and P resorption of Fraxinus mandshurica stand, which suggests that P is an important limiting element of Fraxinus mandshurica during growth, moreover, N and P addition can increase nutrient utilization efficiency and improve nutrient status in the plantation of Fraxinus mandshurica.

Keywords:Fraxinus mandshurica; nitrogen and phosphorus addition; nutrient stoichiometry; nutrient resorption efficiency

0 引言

氮(N)和磷(P)是树木生长的必需元素,限制了世界上大部分森林的生产力[1]。通过N、P添加提高土壤的养分含量,改善树木的养分供应情况,已成为各国提高人工林生产力的重要手段[2]。N、P添加后土壤中养分含量的增加将改变树木体内N、P的浓度和计量比[3-4],生态化学计量学研究表明植物叶片N∶P在一定程度上可以指示植物體内N和P的需求情况,以及生态系统的养分限制情况[5-8],而叶片C∶N和C∶P也可以反映植物生长速率对养分供应的响应[9-10],进而为作物和树木施肥提供依据[11-12]。衰老叶片的养分再吸收是植物提高N、P等养分利用效率的重要手段[13-14],N、P添加后树木的养分再吸收率也将受到影响[15],研究发现施肥后兴安落叶松(Larix gmelinii)叶片养分再吸收率降低[15],而日本落叶松(Larix kaempferi)叶片N素再吸收率提高[16],同时,一些研究发现叶片养分再吸收率不受土壤养分有效性影响[17-18]。目前,关于N、P添加后植物养分化学计量比和养分再吸收率的研究多集中在作物和苗木上[19],但是,对N、P添加后林木响应的研究仍然较少[20]。

2.3 氮磷添加对水曲柳叶片N、P养分再吸收效率的影响

氮添加提高了水曲柳叶片N再吸收率,N1和N2处理水曲柳叶片N再吸收率均显著高于CK处理(P<0.05),但是N1处理叶片N再吸收率最高;隨氮添加量的增大,水曲柳叶片P再吸收率明显提高,N2处理下叶片P吸收率比CK处理高2.3倍(P<0.01)(表3)。

与氮添加后水曲柳叶片N再吸收率变化相似,磷添加后叶片N再吸收率均明显增加(P<0.05),且P1处理最高;而磷添加后叶片P再吸收率逐渐提高,且P1和P2处理均显著高于CK(P<0.01),其中P2处理比CK高2.7倍(表3)。

2.4 水曲柳成熟叶和衰老叶C、N、P化学计量比与叶片再吸收率的相关性

相关分析表明水曲柳叶片N再吸收率与成熟叶、衰老叶的养分浓度及化学计量比之间的相关性均不显著(P>0.05)。叶片P再吸收率与成熟叶片P浓度呈显著正相关(P<0.05),但与衰老叶P浓度呈极显著负相关(P<0.01);叶片P再吸收率与成熟叶C∶P呈显著负相关(P<0.05),与衰老叶C∶P、N∶P呈极显著正相关(P<0.01)(表4)。

3 结论与讨论

本研究中,水曲柳对照样地土壤全C、全N和全P含量分别为55.60、5.55和0.89 g/kg,与王淑平等[27]对东北东部森林土壤的研究相比,全N和全P均高于该地区的平均水平,但是略低于郝玉琢和王树力[23]对帽儿山水曲柳人工林的研究结果;另外,土壤N∶P可以为土壤养分限制类型提供有效预测,随N和P添加量的增加,水曲柳林地土壤N∶P分别表现增大和降低的趋势,表明N和P添加改善了土壤的养分供应情况,但是本研究中土壤的N∶P均高于郝玉琢和王树力的研究结果,说明磷添加后本研究中林地土壤磷的供应能力仍较低。叶片N∶P是植物养分限制的重要指示,本研究中水曲柳对照(CK)和N添加处理样地中水曲柳成熟叶N∶P为20.07~23.32(表2),根据生态化学计量学研究中植物组织的N∶P大于16时,生长主要受P限制[5]的研究结果,说明P是限制本研究中水曲柳林木生长的重要因素,而P添加后水曲柳成熟叶的N∶P均降低,且随P添加量的增加而降低(表2),表明较高的P添加能够明显改善水曲柳林木的养分需求情况,P2处理时成熟叶N∶P<16,说明较高P添加开始对该地区的P限制起到缓解作用。与土壤N∶P的变化相比,水曲柳叶片N∶P的变化幅度明显较大(表1),这可能与水曲柳林木对P的需求较大,吸收效率较高有关。本研究中水曲柳成熟叶的C∶N和C∶P都表现出随N、P添加量的增加而逐渐降低的趋势,根据生长速率假说[9-10]中叶片C∶N和C∶P一般与生长速率负相关的结论,表明N、P添加均提高了水曲柳的生长速率。

养分再吸收是植物提高环境适应能力的重要策略,本研究中N、P添加处理下的水曲柳叶片再吸收率均高于对照,表明N、P添加提高了水曲柳叶片养分的再吸收利用效率,使其能够回收更多的养分继续用于生长,这与对日本落叶松[17]和麦冬(Ophiopogon japonicus)[28]的研究一致,但与施肥后兴安落叶松叶片养分再吸收效率降低的结果相反[16],原因可能是短期施肥促进植物快速生长,提高了碳同化速率,同时也加大了植物对养分的需求[29-30],所以通过养分再吸收将更多的养分回收然后流向植物的光合器官[31]。这一现象反映了本研究中的林地土壤氮磷养分的供应能力尚不能满足水曲柳生长提高后对养分的需求,因此叶片需要通过回收更多的养分满足自身生长,也表明水曲柳的养分再吸收与环境养分供应密切相关[17,28]。本研究中水曲柳N、P再吸收速率分别为20.64%~37.65%和17.52%~63.48%,其中P再吸收效率变化幅度明显高于N再吸收速率,而且高N和高P添加下P再吸收率明显高于N再吸收率(表3),通过Pearson相关性分析发现,水曲柳叶片N再吸收率与叶片养分含量和养分计量比之间的相关性均未达到显著水平,而叶片P再吸收率与成熟叶P含量和衰老叶C∶P、N∶P呈显著正相关,与成熟叶C∶P和衰老叶P含量呈显著负相关(表4),表明水曲柳P素再吸收能力高于N素,但是水曲柳对P素的再吸收受环境影响较大,尤其是与叶片P素特征密切相关[31]。另外本研究中水曲柳衰老叶的N含量范围在1.65%~2.13%之间,P含量范围在0.06%~0.09%之间,与邓浩俊等[32]的研究相似,根据Killingbeck[26]的研究结果衰老叶中N和P含量分别大于1.00%和0.08%则被不完全吸收的原则,说明水曲柳对P的再吸收率接近完全吸收,因此,通过N、P添加改变水曲柳养分供应情况能够调节水曲柳对P素的再吸收作用,提高水曲柳的养分利用效率。

【参 考 文 献】

[1]GUSEWELL S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.

[2]BINKLEY D. Forest nutrition management[M]. New York: John Wiley & Sons, Inc, 1986.

[3]阎恩荣, 王希华, 郭明. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48-57.

YAN E R, WANG X H, GUO M. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48-57.

[4]ZHANG Q F, XIE J S, LYU M K, et al. Short-term effects of soil warming and nitrogen addition on the N∶P stoichiometry of Cunninghamia lanceolata in subtropical regions[J]. Plant & Soil, 2017, 411: 395-407.

[5]KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.

[6]TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C∶N∶P ratios in Chinas soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(3): 139-151.

[7]黄菊莹, 余海龙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响[J]. 植物生态学报, 2017, 41(3): 325-336.

HUANG J Y, YU H L. Effects of different nitrogen: phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis[J]. Chinese Journal of Plant Ecology, 2017, 41(3): 325-336.

[8]刘芳,葛江丽,施汉钰,等.西洋参地氮磷钾含量变化规律研究[J].林业科技,2017,42(6):19-21.

LIU F,GE J L,SHI H Y,et al.Study on changing rule of nitrogen, phosphorus and potassium content in Panax quinquefolium field[J].Forestry Science & Technology,2017,42(6):19-21.

[9]TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534.

[10]ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry[J]. BioScience, 1996, 46(9): 674-684.

[11]YOU C M, WU F Z, YANG W Q, et al. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis[J]. Environmental Pollution, 2018, 241: 740-749.

[12]MO Q F, ZOU B, LI Y W, et al. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest[J]. Scientific Reports, 2015, 5(1): 14605.

[13]KILLINGBECK K T. The terminological jungle revisited: Making a case for use of the term resorption[J]. Oikos, 1986, 46(2): 263-264.

[14]AERTS R. Nutrient use efficiency in evergreen and deciduous species[J]. Oecologia, 1990, 84(3): 391-397.

[15]REED S C, TOWNSEND A R, DAVIDSON E A, et al. Stoichiometric patterns in foliar nutrient resorption across multiple scales[J]. New Phytologist, 2012, 196(1): 173-180.

[16]趙琼, 刘兴宇, 胡亚林. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5): 14-19.

ZHAO Q, LIU X Y, HU Y L. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Scientia Silvae Sinicae, 2010, 46(5): 14-19.

[28]陈伏生, 胡小飞, 葛刚. 城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率[J]. 草业学报, 2007, 16(4): 47-54.

CHEN F S, HU X F, GE G. Nitrogen and phosphorus stoichiometry and nutrient resorption efficiency of urban ground cover[J]. Acta Prataculturae Sinica, 2007, 16(4): 47-54.

[29]曹昊,刘瑰琦,施汉钰,等.氮、磷、钾肥施肥量对半夏产量影响的研究[J].林业科技,2017,42(2):35-37.

CAO H, LIU G Q, SHI H Y, et al. Effect of nitrogen, phosphorus and potassium fertilizer application rate on pinellia ternata yield[J]. Forestry Science & Technology, 2017, 42(2):35-37.

[30]CORREIA P J, MARTINSLOUCAO M A. Leaf nutrient variation in mature carob (Ceratonia siliqua) trees in response to irrigation and fertilization[J]. Tree Physiology, 1997, 17(12): 813-819.

[31]WEI H X, XU C Y, MA L Y, et al. Short-term nitrogen (N)-retranslocation within Larix olgensis seedlings is driven to increase by N-deposition: evidence from a simulated 15N experiment in northeast China[J]. International Journal of Agriculture & Biology, 2014, 16(6):1031-1040.

[32]鄧浩俊, 陈爱民, 严思维,等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3): 522-527.

DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala[J]. Chinese Journal of Applied Environmental Biology, 2015, 21(3): 522-527.