具有直接链路的能量收集认知协作中继网络中断概率分析
2019-09-18罗轶施荣华董健唐锟王雨婷
罗轶,施荣华,董健,唐锟,王雨婷
(1.中南大学信息科学与工程学院,湖南长沙,410083;2.湖南师范大学信息科学与工程学院,湖南长沙,410081)
为了解决能量受限认知中继网络(cognitive relay networks,CRNs)生存期短的问题,人们对射频能量收集(radio frequency energy harvesting,RF-EH)技术与CRNs融合形成的RF-EH-CRNs进行了研究[1-8]。区别于从主发送端(primary transmitter,PT)和/或次用户(secondary user,SU)节点的射频信号中收集能量的方式[1-4],MONDAL 等[6-8]将功率信标(power-beacon,PB)[5]辅助RF-EH 方式引入CRNs,分别推导了多跳PB 辅 助RF-EH-CRNs在无/有主网络(primary network,PN)干扰下的中断概率(outage probability,OP)。LE[8]分析了分布式多PB 辅助RF-EH-CRNs 在Nakagami-m衰落信道下的中断性能。近几年来,以机会中继选择(opportunistic relay selection,ORS)和部分中继选择(partial relay selection,PRS)这2种主动协作中继策略为基础的认知协作中继网络(cognitive cooperative relay networks,CCRNs)受到广泛关注[9-15]。但WU等[9-11]的研究中忽略了次网络(secondary network,SN)源节点和目的节点间的直接链路。SHARMA等[12]研究了采用ORS 和PRS 策略,具有单主接收端(primary receiver,PR)、中继硬件损伤和SN 直接链路的放大转发(amplify-and-forward,AF)CCRNs。MOUALEU 等[13]提出了具有单PR、单PT 和SN 直接链路的AF-CCRNs。HO-VAN[14]分析了具有单PR、单PT 和SN 直接链路的译码转发(decode- and-forward,DF)CCRNs 在采用ORS 策略及选择合并(selection combining,SC)和最大比值合并(maximum ratio combining, MRC)方式下的中断性能。 而KANDELUSY 等[15]讨论 了采用ORS 和PRS 策略且具有多PR、多PT和多SN目的节点以及SN直接链路的DF-CCRNs,并得出了SN 在采用SC 方式下的OP。近年来,采用RF-EH 技术和认知协作中继的EHCCRNs已成研究热点[16-18]。VERMA等[16]提出了采用携能传输的能量辅助DF-EH-CCRNs。YIN 等[17]讨论了两跳PB 辅助EH-CCRNs 在单窃听节点下的保密中断概率。而ABD-ELMAGID 等[18]则研究了具有有限中继缓存和电池容量的EH-CCRNs吞吐量。但是,以上研究均假设SN源节点和目的节点间不存在直接链路,目前对于具有SN 直接链路的PB 辅助EHCCRNs 的研究还很少。本文作者提出一种具有多PR、多SN目的节点、SN直接链路和SN硬件损伤的PB辅助DF-EH-CCRNs,并分析其在瑞利块衰落信道(Rayleigh block fading channel,RBFC)下采用ORS 策略和SC方式的SN精确和渐近中断概率。
1 网络系统模型
网络系统模型如图1所示。本文假设1个DF-EHCCRNs 模型,其中主网络由M个接收节点Qm(m∈{1,2,…,M})组成;次网络则由源节点S、N个DF 中继节点Rn和J个目的节点Dj(n∈{1,2,…,N},j∈{1,2,…,J})组成。该模型可以表示包含几个目的节点的多用户CRNs。本文忽略主网络对次网络的干扰,模型中每个节点均为半双工方式工作的单天线设备。CCRNs 采用underlay 模式共享频谱,即S和R使用主网络授权频谱,同时通过直接链路以及选定Rn向已选定的目的节点Dj发送信息。安装了RF-EH 电路的所有R和S同时从功率信标节点B收集能量。假设所有网络链路均为独立RBFC,信道系数在一个时隙T内保持不变,而在不同时隙间独立变化[1-3]。hS,Rn,hS,Dj和hRn,Dj分别为节点S到Rn和Dj链路以及Rn到Dj链路的信道系数;fB,Rn和fB,S分别为B到Rn和S链路的信道系数;gS,Qm和gRn,Qm分别为节点S和Rn到Qm链路的信道系数。为了简单起见,与文献[1,15]类似,本文假设所有的主网络节点Q(R和D)紧靠在一起,因此S到主网络节点Q(S到R;S到D;B到R;R到Q以及R到D)链路信道增益是独立同分布的随机变量,即|hS,Rn|2,|hS,Dj|2,|hRn,Dj|2,|fB,Rn|2,|fB,S|2,|gS,Qm|2和|gRn,Qm|2分别服从期望为1/λS,R,1/λS,D,1/λR,D,1/βR,1/βS,1/ωS和1/ωR的指数分布。例如,λS,R=d ξS,R,其中dS,R为S到R的距离,ξ为路径损耗指数[1]。假设次网络节点接收端噪声为均值为0、方差为σ2的复高斯白噪声,表示为n0~CN(0,σ2)。
图1 网络系统模型Fig.1 Networks system model
BJORNSON 等[19]提出了一种收发信机硬件损伤模型。在该模型中,假设功率为P的信号s通过叠加了复高斯白噪声n且信道系数为h的无线信道进行传输。由于发射机和接收机的硬件损伤,导致信号s在发射和接收时产生失真。令τt和τr分别为由发射机和接收机硬件损伤导致的失真噪声,则接收端信号y可表示为
式中:τt~CN(0,k2tP);τr~CN(0,k2rP|h|2);参数kt和kr分别为发射机和接收机的硬件损伤水平。本文采用该模型对次网络节点的硬件损伤进行建模。为了简化分析,假设对于任意的n和j,节点S和Rn的发射机硬件损伤水平均为kt,节点Rn和Dj的接收机硬件损伤水平均为kr。
时隙结构示意图如图2所示。图2中,节点S和所有R在时隙的前αT时段(α为EH比率,0<α<1)同时从B收集能量,并在之后的(1-α)T时段进行数据传输(data transmission,DT)。根据文献[5],EH 和DT所采用的信道完全分离,因此,即使Q的发射功率Pt较大,也不会对次网络和主网络产生干扰。假设节点q(q∈{S,Rn})的RF-EH电路能量转换效率均为η(0<η<1),则其在EH阶段能够收集到的能量Eq为
式中:q收集到的噪声能量太小而被忽略。与文献[1,6]类似,假设q配置的大电容能存储其RF-EH电路收集到的所有能量,并且由于大电容存在漏电现象,在时隙结束时其所存储电能会被全部泄漏。
图2 时隙结构示意图Fig.2 Structural diagram of time slot
在underlay 模式下,为了确保主网络通信质量,次网络节点发射功率会受到主网络干扰约束PI的严格限制,即Q接收到的干扰信号功率不能超过PI。考虑到节点q具有硬件损伤,其发射功率Pq为
式中:Zq=|fB,q|2;Yq=max|gq,Qm|2,m=1,2,…,M;ρ= 2αη/(1 -α),忽略电路功率消耗以及发送信息前大电容漏电所导致的能量损失。
为了降低复杂度并减少网络中传输链路信道状态信息的数据量,在节点S向D发送信息前,从节点D中选出直接链路信道质量最好的目的节点Dj*接收S和R传输的数据,其选择标准如下:
式中:j=1,2,…,J。在DT的前(1-α)T/2时段,节点S向所有的中继节点R和Dj*发送数据,Rn和Dj*的瞬时接收端信噪比γS,Rn和γS,Dj∗分别为:
式中:j=1,2,…,J。PS为节点S的发射功率;XS,Rn=|hS,Rn|2;XS,Dj=|hS,Dj|2;kt2,r=kr2+kt2。在前(1-α)T/2时段的最后,所有中继节点R对接收自节点S的数据进行译码,在随后的(1-α)T/2时段中继节点Rn将译码后的S节点数据转发给节点Dj*,则节点Dj*的瞬时接收端信噪比γRn,Dj∗为
式中:XRn,Dj∗=|hRn,Dj∗|2。
为了提高传输质量和降低系统复杂度,采用ORS策略从节点R中选出中继节点Rn*对节点Dj*进行转发,其选择标准如下:
式中:n=1,2,…,N。
在节点Dj*采用SC方式处理节点S和Rn*发送的信息,则次网络的端到端信噪比γe2e可以表示为
式中:n=1,2,…,N。
2 精确中断概率分析
中断概率是评估无线网络系统性能最重要的指标之一,本文将网络端到端的信噪比低于某一特定中断信噪比阈值γth的概率定义为中断概率(OP)。本节将推导出中断概率的精确闭合式。为了便于计算中断概率,首先推导出Yq和Uq(其中Uq=Pq/σ2,q∈{S,Rn})的累积分布函数(cumulative distribution function,CDF)和概率密度函数(probability density function,PDF)。由于Yq是M个独立同分布随机变量的最大值,其累积分布函数FYq(yq)和概率密度函数fYq(yq)分别为:
Uq的累积分布函数FUq(uq)和概率密度函数fUq(uq)分别为:
考虑到γS,Rn和γS,Dj∗存在相同随机变量US,使用条件概率将中断概率表示为
下面分别推导式(14)中的ϑ1(γth)和ϑ2(γth)。首先推导ϑ1(γth),
ϑ2(γth)可以表示为
依据文献[20]可得
式 中:a(γth)=λR,Dγthσ2(1 +k2t)+mωRPI(1 -k2t,rγth),K1(∙)为一阶第二类修正Bessel函数。
将式(13),(15)和(16)代入式(14),可得次网络精确中断概率Pout为
3 渐近中断概率分析
本节将分别推导在主网络对次网络无干扰限制(Pt≪PI)和有干扰限制(Pt≫PI)情况下次网络的渐近中断概率闭合式。当Pt≪PI时,主网络能容忍较大的干扰信号功率,节点q收集到的能量能全部用于发送信息;当Pt≫PI时,节点q能收集到较多能量,但其发射功率完全受PI限制。因此,在以上2 种情况下Pq(q∈{S,Rn})可分别表示为
3.1 无干扰限制下的渐近分析
当Pt≪PI时,式(5)~(7)可分别表示为
式(14)可以表示为
式中:ϑ∞2(γth)可以表示为
将式(22)和(23)代入式(21),可得无干扰限制下的次网络渐近中断概率为
3.2 有干扰限制下的渐近分析
当Pt≫PI时,式(5)~(7)可分别表示为
式(14)可表示为
下面分别推导式(26)中的ϑ01(γth)和ϑ02(γth)。ϑ01(γth)可以表示为
ϑ02(γth)可以表示为
式中:d(γth)=λR,Dγthσ2(1 +k2t)。
将式(11),(27)和(28)代入式(26),可得有干扰限制下的次网络渐近中断概率为
从式(30)可以看出:P0out与Pt无关。一旦PI确定,Pt再大,节点q收集到的能量再多都无法使P0out下降。
4 仿真结果及分析
本节通过对中断概率理论分析的数值计算和105次Monte Carlo 仿真来分析次网络中断性能。将节点S,节点B,K个D节点,M个Q节点和N个R节点的位置分别设置在X-Y平面上的(-0.5, 0),(-1,1),(0.5,0),(1.5,-0.5)和(0,1)这5 个点。在仿真分析中,中断阈值γth= 22Re2e/(1-α)- 1(其中Re2e为次网络的端到端信道容量[1]);ξ=2.5,σ2=1,Pt和PI均被σ2归一化。
当η分别为0.4 和0.8,PI分别为12 和15 dB,α=0.5,Re2e=0.85 bit/(s·Hz),N=M=J=3,kt=kr=0.05 时,Pt与精确和渐近中断概率之间的函数关系如图3所示。从图3可见:1)给定PI和η,当Pt≪PI时,Pout与近似相等;随着Pt增大,Pout与均单调下降,且Pout逐渐大于;当Pt≫PI时,Pout将趋近于。这是因为当Pt逐步增加时,次网络节点收集到的能量随之增多,其发射功率逐渐增大,Q接收端的干扰信号功率也逐步增大到PI,此后受干扰约束限制,次网络节点的发射功率不再随Pt的增大而增加,Pout将出现饱和现象。2)给定PI和Pt,当η较大时,次网络节点能收集到较多能量以提高发射功率,从而降低Pout和。3)给定η和Pt,当PI较大时,Q能容忍次网络节点以较大发射功率传输信息,从而使Pout和降低。
图3 Pt与中断概率之间的函数关系Fig.3 Function relation between Pt and OP
当PI=12 dB,η=0.8,α=0.5,Re2e=0.85 bit/(s·Hz),N=M=J=3 时,次网络节点硬件损伤对中断概率的影响如图4所示。从图4可见:当Pt给定时,随着kt和kr的增大,Pout也随之增加。例如,当Pt=30 dB 时,次网络节点由无硬件损伤(kt=kr=0)变化到具有一定硬件损伤(kt=kr=0.2)后,Pout由小于1%增大到20%以上。由此可见,次网络节点硬件损伤对次网络的中断概率影响显著。
图4 硬件损伤对中断概率的影响Fig.4 Effect of hardware impairments on OP
当Pt=30 dB,η=0.8,α=0.5,Re2e=0.85 bit/(s·Hz),kt=kr=0.05时,Q,R和D节点数对中断概率的影响分别如图5和图6所示。图5中,N=J=3,M=1,2,4,6;图6中M=3,N=J=1,2,5,10,15,20,25。从图5和图6可见:1)当N,J,M和Pt一定时,随着PI的增大,Pout单调下降并趋于饱和。这是因为次网络节点的发射功率会随PI的提升而增加,但其有限的存储能量决定了发射功率的最大值。2)给定N,J和PI,当M增大时,节点S和D到Q的干扰链路数目以及具有较大干扰信道增益的概率也随之增加,导致Pout增大。3)当M和PI给定时,增大N和J会带来更多的分集增益,从而降低Pout;但当N和J达到一定程度(如N=J>20)后,再继续增大N和J,对Pout的降低影响很小,因此,需要合理设置N和J。
图5 主接收端Q节点数对中断概率的影响Fig.5 Effect of number of Q node on OP
图6 R和D节点数对中断概率的影响Fig.6 Effect of number of R and D nodes on OP
当Pt=15 dB,η=0.8,Re2e=0.85 bit/(s·Hz),kt=kr=0.05,N=M=J=3 时,不同PI条件下α与中断概率Pout之间的函数关系如图7所示。从图7可见:1)当PI一定时,随着α的增加,Pout先减小再逐步增大。这是因为随着α从0开始逐渐增大,次网络节点能收集到更多能量用于提高发射功率,致使Pout降低;随着α的持续增大,γth随之增加,但次网络节点发射功率受PI限制不再升高,导致Pout上升。2)当PI取不同值时,Pout最小值所对应的α也不尽相同。例如,当PI=7 dB时,α取0.2可使Pout最小;当PI=10 dB时,α取0.3可使Pout最小;而当PI≥15 dB时,α取0.4可使Pout最小。因此,恰当设置α能有效降低Pout。
图7 α与中断概率之间的函数关系Fig.7 Function relation between α and OP
当Pt=25 dB,η=0.8,kt=kr=0.05,α=0.5,N=M=J=3时,Re2e对中断概率Pout的影响如图8所示。从图8可见:当PI一定时,随着Re2e的增大,γth随之增加,从而使得Pout增大。因此,合理设置Re2e将有利于平衡DF-EH-CCRNs传输的有效性和可靠性。
图8 Re2e对中断概率的影响Fig.8 Effect of Re2e on OP
从图3~8可见:中断概率理论分析的数值计算曲线与Monte Carlo 仿真结果曲线重合,证明了理论分析的正确性。
5 结论
1)提出了一种具有多主接收端、多次网络目的节点、次网络直接链路和次网络节点硬件损伤的功率信标辅助译码转发能量收集认知协作中继网络(DFEH-CCRNs)。
2)推导出了在瑞利块衰落信道(RBFC)下使用机会中继选择(ORS)策略和选择合并(SC)方式的次网络精确和渐近中断概率闭合式。
3)功率信标发射功率或者干扰约束的提升将使中断概率单调下降并出现饱和现象。次网络节点硬件损伤和主接收端数量的增加以及端到端信道容量增大都将导致次网络中断性能明显降低。同时,恰当设置中继节点和目的节点的数目以及能量收集比率能有效减小中断概率。