APP下载

对图结构的魔幻性研究

2019-09-10姚明姚兵

现代信息科技 2019年22期

姚明 姚兵

摘  要:由给定边魔幻图结合群的代数运算系统,构造出奇魔幻群和图-奇魔幻群,得到具有普适性的可算法化的运算方法和简洁明了的结果,给出了互化标号的数学关系式,规模化地构造出方法,构造过程因运算可算法化而得以实施,新定义与算法的引入为不局限于特殊图类标号的研究提供了新的数理支撑。

关键词:边魔幻标号;优美标号;奇优美标号;魔幻群;全魔幻图;运算关系

中图分类号:O157.5       文献标识码:A 文章编号:2096-4706(2019)22-0005-04

Abstract:Based on the algebraic operation system of the given edges-magical graph and the group,the odd-magical group and the graph odd-magical group are constructed,and the general algorithmic operation method and simple and clear results are obtained. The mathematical relationship of the mutual label is given,and the method is constructed on a large scale. The construction process is implemented due to the algorithmic operation. The introduction of the new definition and algorithm is not limited to the special graph. The research of class label provides a new mathematical support.

Keywords:edge-magical labellings;graceful trees;odd-graceful trees;magical group;total-magical graphs;operation relation

3  结  论

基于代数运算给出新的定义与算法为满足条件的图结构与标号可相互互化,由于新算法的可算法化,使得图结构与标号的互化得以实施。应用定义的魔幻群及新数学表达式以及标号互化可算法化的数理关系为标号的深入研究提供了数理支撑;特别是简洁明了的证明过程及清晰的结果使得可算法化的方法具有理论性和可操作性,益于发现新结果与助力于标号理论的研究,今后进一步的工作是依据魔幻群的定义尝试建立适合其他标号研究的运算系统。

参考文献:

[1] KATHIRESAN K M. Two Classes of Graceful Graphs [J]. Ars Combinatoria,2000,55(2):183-186.

[2] LLADÓ A. Largest cliques in connected supermagic graphs [J]. European Journal of Combinatorics,2007,28(8):2240-2247.

[3] YAO B,ZHANG Z,YAO M,et al. A New Type of Magical Coloring [J]. Advances in Mathematics,2008(5):571-583.

[4] WILLIAM A,RAJAN B,RAJASINGH I,et al. Nor Super Edge Magic Total Labelling [C]//The Proceeding of the 4th International Workshop in Graph Labeling,Harbin Engineering University and University of Ballarat,Australia,2008:5-8.

[5] ZHOU X,YAO B,Chen X,et al. A proof to the odd-gracefulness of all lobsters [J]. Ars Combinatoria,2012(103):13-18.

[6] YAO B,CHENG H,YAO M,et al. A Note on Strongly Graceful Trees [J]. Ars Combinatoria,2009(92):155-169.

[7] ROSA A. On certain valuations of the vertices of a graph [J]. Theory of Graphs,1967:349-355.

[8] GALLIAN J A. A Dynamic Survey of Graph Labelling [J]. The Electronic Journal of  Combinatorics,2000(19):6-189.

[9] EDWARDS M,HOWARD L. A survey of graceful trees [J]. Atl. Electron. J. Math.,2006,1(1):5-30.

[10] YAO M,YAO B,XIE J. Some Results on the k-magical Labelling of Graphs [J]. Journal of Gansu Sciences,2010,22(1):1-6.

[11] 張禾瑞.近世代数基础 [M].北京:高等教育出版社,1986:1-175.

[12] BONDY J.A,MURTY U.S.R. Graph Theory with Application [M]. Amsterdam:Elsevier Science Ltd,1976.

作者简介:姚明(1962-),男,汉族,江苏扬州人,教授,本科,研究方向:图的着色和标号及计算优化。