APP下载

半纤维素基pH响应性水凝胶的制备及其药物控释研究

2019-09-10许孟杰李卫兵周雪松

中国造纸 2019年4期

许孟杰 李卫兵 周雪松

摘要:以从玉米芯中提取的水不溶性半纤维素(wisAGX) (中性单糖组成为:83.09%木糖、10.03%葡萄糖、4.76%阿拉伯糖、0.76%半乳糖)为原料,在碱性介质中与丙烯酰胺接枝共聚并适度水解,在半纤维素中引入具有pH响应性的聚丙烯酸(PAA)链段,再将共聚物与聚乙烯醇(PVA)溶液共混后以戊二醛交联制备半纤维素基水凝胶。通过核磁共振仪和傅里叶变换红外光谱仪对该水凝胶的化学结构进行表征,利用扫描电子显微镜对水凝胶的形貌特征进行表征,研究了该水凝胶在去离子水和不同pH值环境下的溶胀行为。结果表明,水凝胶具有明显的pH响应性,且在pH值10时溶胀率最高,可达1210%。此外,水凝胶的溶胀率与羧基含量正相关,与戊二醛用量负相关。以茶碱作为模型药物,探讨了其在模拟胃液(pH值1.2)和肠液(pH值7.4)介质中的药物释放行为。在6 h内,担载药物后的水凝胶在模拟肠液中的药物累积释放量可达68%,明显高于其在胃液中51%的药物累积释放量,故此水凝胶有明显的药物缓释作用。

关键词:水不溶性半纤维素;聚乙烯醇;pH响应性水凝胶;药物控释

中图分类号:TQ317.4

文献标识码:A

DOI:10.11980/j.issn.0254508X.2019.04.004

Abstract:A kind of novel pHsensitive hemicellulosesbased hydrogels was synthesized from the water insoluble hemicelluloses (wisAGX)(the composition of neutral monosaccharide was 83.09% xylose, 10.03% glucose, 4.76% arabinose and 0.76% galactose)extracted from corncobs via sequential graft copolymerization, saponification hydrolysis in alkaline medium, blending with polyvinyl alcohol(PVA)and crosslinkage in presence of glutaraldehyde.The chemical structure of the composite hydrogel was characterized by NMR and Fourier transform infrared spectroscopy, and the morphological characteristics of the hydrogel were characterized by scanning electron microscopy. The swelling properties of the hydrogels in distilled water and buffer solutions with different pH values were studied, respectively. The results show that the hydrogel has obvious pH sensitivity, and the swelling rate is the highest at pH=10, up to 1210%. In addition, the swelling rate of the hydrogel is positively correlated with the content of —COOH and negatively correlated with the amount of glutaraldehyde. Using theophylline as a model drug, its drug release behavior in simulated gastric fluid (pH=1.2) and intestinal fluid (pH=7.4) was investigated. Within 6 h, the cumulative release of the drugloaded gel in the simulated intestinal fluid was up to 68%, which was significantly higher than the cumulative release of 51% of the drug in the gastric juice, so hydrogel has obvious drug sustained release effect and pH sensitivity.

Key words:water insoluble hemicelluloses; polyvinyl alcohol; pH sensitive hydrogels; drug controlled release

水凝膠是一种能够在水中溶胀但又不溶解于水且具有亲水基团的三维网络结构的高分子材料[1]。智能型水凝胶是一类受外界环境微小的物理和化学刺激如温度、pH值、盐浓度、光、电场、化学物质等,其自身性质就会发生明显改变的交联聚合物[23]。由于智能型水凝胶这种独特的响应性,其在生物医药、组织工程等方面具有很好的应用前景,如药物载体、组织工程支架材料及人工器官等[46]。目前,对智能型水凝胶研究最多的集中在温度敏感和pH响应性水凝胶上,特别是pH响应性水凝胶已受到越来越多的关注。pH响应性水凝胶可以把药物分子包埋在水凝胶网络中,使水凝胶载体能够根据人体环境pH值的变化实现药物的靶向释放[78]。

近年来,使用天然多聚糖制备智能型水凝胶实现药物缓释成为研究热点之一。天然多糖来源广泛、可再生、无毒,而且具有良好的生物相容性和生物降解性。半纤维素是植物细胞壁中连接纤维素和木素的一种杂化聚糖,在自然界中的含量仅次于纤维素[910]。玉米芯中分离得到的半纤维素根据主链取代度的不同分为水溶性半纤维素(wsAGX)和水不溶性半纤维素(wisAGX)两种,其中wisAGX主链由木糖结构单元通过β14糖苷键链接而成,其中主链中95%的木糖结构单元未被取代,因此,这类半纤维素主要呈线形结构;而wsAGX大于15%的木糖结构单元被取代[1112]。

Sun X F等人[1315]在水相体系中以半纤维素和丙烯酸为原料, NN亚甲基双丙烯酰胺为交联剂,制备了具有pH响应性的水凝胶。但由于丙烯酸单体的反应活性大,在水相体系中往往形成均聚物,而很难被接枝于半纤维素主链上;此外,聚合过程中,由于大量均聚物的形成而导致凝胶效应出现,使半纤维素与丙烯酸的接枝共聚反应不易发生,因而无法真正实现半纤维素的高值化利用。

本研究在碱性介质中,以丙烯酰胺替代丙烯酸对从玉米芯中提取得到的水不溶性半纤维素(wisAGX)进行接枝共聚改性,然后将接枝共聚物适度皂化水解得到侧链含有聚丙烯酸(PAA)链段的接枝共聚物,可避免因直接使用丙烯酸这类高反应活性的单体在反应介质中均聚产生的“爬杆效应”,而导致的接枝共聚反应失败。并将皂化产物与聚乙烯醇(PVA)溶液共混后经戊二醛化学交联制备出具有pH响应性的水凝胶。以茶碱为模型药物,对载药后的复合水凝胶在模拟胃液和肠液中的药物释放行为进行了研究。

1实验

1.1主要仪器与试剂

离子色谱分析仪(Dionex ICS3000,美国);傅里叶变换红外光谱仪(FTIRNexus 670,Nicolet,美国);超导核磁共振谱仪(AVANCE AV 400,Bruker,瑞士);扫描电子显微镜(ZEISS,德国);紫外可见光分光光度计(UV8453,美国)。

水不溶性半纤维素(wisAGX)由本实验室提取[16](中性单糖组成为:83.09%木糖,10.03%葡萄糖,4.76%阿拉伯糖,0.76%半乳糖);聚乙烯醇(PVA)(相對分子质量为95000,醇解度95%),百灵威科技有限公司;丙烯酰胺(AM)、硫代硫酸钠(Na2S2O3),天津市科密欧化学试剂有限公司;过硫酸钾(KPS),天津福晨化学试剂有限公司;戊二醛(质量分数为25%),天津市福晨化学试剂厂;茶碱(药典BP级),上海晶纯试剂有限公司。以上所有试剂均为分析纯,无需纯化可直接使用。

1.2皂化产物(wisAGXgPAA)的制备

将0.5 g水不溶性半纤维素在100 mL的三口烧瓶中溶于10 mL质量分数为 2%的NaOH溶液中,50℃水浴中搅拌至完全溶解,然后迅速降温至(30±1)℃,随后加入5 mL浓度为3.89 mmol/L的KPSNa2S2O3引发剂(KPS与Na2S2O3摩尔比为1∶1)水溶液,通入氮气并搅拌30 min,然后将15 mL浓度为1.41 mol/L的丙烯酰胺水溶液缓慢滴加入反应瓶中,滴加时间为1 h。混合溶液在此温度下反应4 h后,加入1 mL质量分数为2%的对苯二酚水溶液终止反应。然后将上述溶液放入60℃烘箱中干燥24 h,继续放入50℃真空干燥箱中干燥至恒质量。将上述干燥后的产物置于N, N二甲基甲酰胺(DMF)和冰醋酸的混合液中(DMF与冰醋酸体积比为1∶1),在室温条件下浸泡12 h以除去未反应的单体及均聚物,过滤得固体物[17]。固体物用丙酮多次洗涤,将洗涤后的产物放入50℃真空干燥箱中干燥至恒质量,该固体物即为wisAGXgPAM接枝共聚物。取上述干燥后的产物0.5 g,溶于10 mL NaOH溶液中,在设定的温度下搅拌、皂化反应4 h后,将皂化产物在乙醇中沉淀。所得沉淀物放入50℃的真空干燥箱中干燥至恒质量,皂化后得到的最终产物即为wisAGXgPAA。wisAGXgPAM皂化反应条件如表1所示,皂化水解路线如图1所示。

3结论

本研究以从玉米芯中提取的水不溶半纤维素为原料,通过接枝共聚与皂化水解反应合成出侧链具有pH响应性的聚丙烯酸(PAA)链段的半纤维素接枝共聚物,再将共聚物与聚乙烯醇(PVA)共混后在戊二醛的化学交联下成功制备出具有pH响应性的半纤维素基水凝胶。

3.1该水凝胶在pH值低于4.6的环境中溶胀率较低;而在pH值大于4.6的环境中溶胀率较高。其溶胀行为表现出明显的pH响应性,且水凝胶中羧基含量越高,平衡溶胀率越高;交联剂用量越高的水凝胶平衡溶胀率越低。

3.2通过扫描电子显微镜(SEM)可以看出,水凝胶有明显的网状结构,且网孔的尺寸随羧基含量的增加而增大,随交联剂用量的增加而减小。

3.3通过考察载药水凝胶在模拟胃液和肠液中的释放行为发现,其在模拟胃液中药物的释放速率和达到平衡时的累积释放量均明显低于其在模拟肠液中的释放速率和达到平衡时的累积释放量。该类水凝胶表现出明显的pH响应性以及药物的缓释行为。由此可以推知,利用该类水凝胶作为药物载体,有望实现药物的靶向给药以及药物的缓释。

参考文献

[1]Kim S J, Shin S R, Shin D I, et al. Synthesis and characteristics of semiinterpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate)[J]. Journal of Applied Polymer Science, 2010, 96(1): 86.

[2]Qiu Y, Park K. Environmentsensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews, 2012, 64(3): 49.

[3]Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pHresponsive drug delivery[J]. Drug Discovery Today, 2002, 7(10): 569.

[4]Hu X, Wei W, Qi X, et al. Preparation and characterization of a novel pHsensitive Salecangpoly(acrylic acid) hydrogel for controlled release of doxorubicin[J]. Journal of Materials Chemistry B, 2015, 3(13): 2685.

[5]Zhao Yuqiang, Zhang Zhibin, Liu Ning, et al. Application of intelligent hydrogels[J]. Modern Chemical Industry, 2007, 27(3): 66.趙玉强, 张志斌, 刘宁, 等. 智能水凝胶的应用[J]. 现代化工, 2007, 27(3): 66.

[6]NasriNasrabadi B, Mehrasa M, Rafienia M, et al. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering[J]. Carbohydrate Polymers, 2014, 108(20): 232.

[7]Hoare T R, Kohane D S. Hydrogels in drug delivery: Progress and challenges[J]. Polymer, 2008, 49(8): 1993.

[8]Chan A W, Whitney R A, Neufeld R J. Semisynthesis of a controlled stimuliresponsive alginate hydrogel[J]. Biomacromolecules, 2009, 10(3): 609.

[9]Saha B C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30(5): 279.

[10]LIN Da, PENG Hong, YU Ziping, et al. Research Progress in Separation and Purification of Hemicellulose[J]. China Pulp & Paper, 2011, 30(1): 60.林妲, 彭红, 余紫苹, 等. 半纤维素分离纯化研究进展[J]. 中国造纸, 2011, 30(1): 60.

[11]Ebringerová A, Hromádková Z, Heinze T. Hemicellulose[J]. Polysaccharides I, 2005: 1.

[12]WANG An, BI Jiajie, LI Haiming. Research on Variations of Cellulose and Hemicellulose in Acid Catalytic Prehydrolysis of Corn Stalk[J]. China Pulp & Paper, 2016, 35(4): 6.王安, 毕佳捷, 李海明. 玉米秸秆酸催化预水解过程中纤维素和半纤维素变化规律研究[J]. 中国造纸, 2016, 35(4): 6.

[13]Sun X F, Wang H H, Jing Z X, et al. Hemicellulosebased pHsensitive and biodegradable hydrogel for controlled drug delivery[J]. Carbohydrate Polymers, 2013, 92(2): 1357.

[14]Peng X W, Ren J L, Zhong L X, et al. Xylanrich hemicellulosesgraftacrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents[J]. Journal of Agricultural & Food Chemistry, 2011, 59(15): 8208.

[15]Peng F, Guan Y, Zhang B, et al. Synthesis and properties of hemicellulosesbased semiIPN hydrogels[J]. International Journal of Biological Macromolecules, 2014, 65(5): 564.

[16]Fang Ju. Isolation of Hemicelluloses from Corncob and Sythesize of Hemicellulosesbased Hydrogel[D]. Guangzhou: South China University of Technology, 2012.

方驹. 玉米芯半纤维素的分离及其水凝胶的制备[D]. 广州: 华南理工大学, 2012.

[17]Hebeish A, Bayazeed A, ElAlfy E, et al. Synthesis and Properties of PolyacrylamideStarch Graft Copolymers[J]. StarchStarke, 2010, 40(6): 223.

[18]Karaaslan A M, Tshabalala M A, Buschlediller G. Wood hemicellulose/chitosanbased semiinterpenetrating network hydrogels: mechanical, swelling and controlled drug release properties[J]. Bioresources, 2010, 5(2): 1036.

[19]Xu Feng, Sun RunCang, Zhai MeiZhi, et al. Fractional Separation of Hemicelluloses and Lignin in High Yield and Purity from Mild BallMilled Periplocasepium[J]. Separation Science & Technology, 2008, 43(11/12): 3351.

[20]Nayak B R, Singh R P. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science, 2010, 81(7): 1776.

[21]Song Y, Zhou J, Zhang L, et al. Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions[J]. Carbohydrate Polymers, 2008, 73(1): 18.

[22]Tanodekaew S, Channasanon S, Uppanan P. Xylan/polyvinyl alcohol blend and its performance as hydrogel[J]. Journal of Applied Polymer Science, 2010, 100(3): 1914.

[23]Soppimath K S, Kulkarni A R, Aminabhavi T M. Chemically modified polyacrylamidegguar gumbased crosslinked anionic microgels as pHsensitive drug delivery systems: preparation and characterization[J]. Journal of Controlled Release, 2001, 75(3): 331.

[24]Mahdavinia G R, Pourjavadia A, Zohuriaan M J. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acidcoacrylamide) grafted chitosan with salt and pHresponsiveness properties[J]. European Polymer Journal, 2004, 40(7): 1399.

[25]Yin Y, Ji X, Dong H, et al. Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginateacrylic acid[J]. Carbohydrate Polymers, 2008, 71(4): 682. CPP

(責任编辑:黄举)