电针对CFA大鼠感觉及情绪的二维调节及前扣带皮层-初级体感皮层p-ERK表达的影响
2019-09-10吴泽民王佳玲徐立雷孙晶沈醉朱怡霖张海艳姚淑静邵晓梅方剑乔
吴泽民 王佳玲 徐立雷 孙晶 沈醉 朱怡霖 张海艳 姚淑静 邵晓梅 方剑乔
摘要 目的:觀察电针对慢性炎性痛大鼠痛感觉及其所诱发情绪的干预效应及对前扣带皮层(Anterior Cingulate Cortex,ACC)和初级体感皮层后肢区域(Primary Somatosensory Cortex,Hindlimb Region,S1HL)磷酸化细胞外调节蛋白激酶(Phosphorylated Extracellular Regulated Protein Kinases,p-ERK)表达的影响。方法:建立完全弗氏佐剂(Complete Freund′s Adjuvant,CFA)诱导的慢性炎性痛大鼠模型。痛感觉部分:将38只成年雄性SD大鼠随机分为空白组(n=11)、模型组(n=13)、电针组(n=14),在造模前1 d、模后3 d、6 d、9 d检测大鼠患足机械缩足阈(PWTs)的变化;痛情绪部分:将62只成年雄性SD大鼠,随机分为空白组(n=21)、模型组(n=21)、电针组(n=20)进行条件性位置厌恶实验(Conditioned Place Aversion,CPA)。通过自由跑动(15 min),剔除不符合条件的大鼠,造模前1 d进行条件化前训练(45 min),模后2 h和第2天进行条件化训练(45 min),模后第3天、9天进行检测(15 min)。两部分电针组大鼠均在造模后3 d~9 d进行电针干预,选取双侧“后三里”穴,刺激参数:2/100 Hz疏密波,初始电流强度1 mA,后每10 min增加0.5 mA,共30 min,1次/d,造模后第10天取材,采用免疫荧光法(IF)和免疫印迹法(WB)检测大鼠ACC、S1HL的p-ERK的表达情况。结果:PWTs结果显示,造模后第3天、第6天、第9天,模型组与电针组大鼠PWTs较空白组显著降低(P<0.01),第9天电针组PWTs较模型组显著升高(P<0.01)。CPA检测结果显示,造模后第3天,模型组和电针组CPA score值(大鼠在条件箱停留时间差,Pre-post)较空白组显著升高(P<0.01),造模后第9天,模型组CPA score值较空白组显著升高(P<0.01),电针组CPA score值较模型组显著降低(P<0.01)。与造模后第3比较,造模后第9天模型组CPA score值显著增加(P<0.01),电针组显著降低(P<0.05)。IF检测结果显示,在左侧S1HL,模型组p-ERK免疫阳性细胞的表达较空白组和电针组有上升趋势,在右侧S1HL和双侧ACC,模型组p-ERK免疫阳性细胞的表达较空白组和电针组均显著升高(P<0.01)。WB结果显示,在双侧S1HL,模型组p-ERK1/2蛋白表达与空白组比较,差异无统计学意义。在左侧S1HL,电针组p-ERK1/2蛋白水平与模型组比较明显降低(P<0.05),在右侧S1HL,电针组p-ERK2蛋白水平与模型组比较明显降低(P<0.05),在双侧ACC区,模型组p-ERK1/2蛋白水平较空白组有上升趋势,电针组p-ERK1/2蛋白水平较模型组有下降趋势。结论:电针可提高CFA模型大鼠机械痛阈并缓解CFA大鼠厌恶情绪;该效应可能与其下调右侧S1HL中p-ERK表达水平和下调双侧ACC的p-ERK表达水平有关。
关键词 电针;慢性炎性痛;磷酸化细胞外调节蛋白激酶;前扣带皮层;体感皮层;痛感觉;痛情绪;大鼠
Abstract Objective:To observe the intervention effects of electroacupuncture on pain sensation and induced emotion in rats with chronic inflammatory pain and on the expression of phosphorylated extracellular regulated protein kinases(p-ERK)in anterior cingulate cortex(ACC)and somatosensory cortex(S1HL).Methods:A model of chronic inflammatory pain induced by complete Freund′s adjuvant(CFA)was established.Pain sensation part:38 adult male Sprague-Dawley rats were randomly divided into a blank group(n=11),a model group(n=13),and an electroacupuncture group(n=14).The changes of mechanical paw withdrawal threshold(PWTs)of rats were measured 1 day before modeling,3 days,6 days,and 9 days after modeling.Pain affect part:62 adult male SD rats were randomly divided into a blank group(n=21),a model group(n=21),an electroacupuncture group(n=20)for conditional position aversion test(CPA).Rats that did not meet the criteria were excluded by free running(15 min).Conditional training(45 min)was performed one day before modeling,and conditional training(45 min)was performed 2 hours and 2 days after modeling,and the test was performed on the 3rd and 9th day after modeling(15 min).In the electroacupuncture group of the 2 parts of the experiment,electroacupuncture was performed on the 3rd to 9th day after modeling,one time per day,and the bilateral “Housanli” points were selected.Stimulation parameters:2/100 Hz sparse wave,initial current intensity was 1 mA,then increase 0.5 mA every 10 minutes for 30 min,the rats were sacrificed on the 10th day after modeling to detect the expression of p-ERK in rat ACC and S1HL by using immunofluorescence(IF)and Western blotting(WB).Results:PWTs showed that PWTs in the model group and the electroacupuncture group were significantly decreased than those in the blank group on the 3rd,6th,and 9th day after modeling(P<0.01).On day 9,PWTs in the electroacupuncture group were significantly increased than those in the model group(P<0.01).The results of CPA test showed that the CPA score of the model group and the electroacupuncture group(the difference in the residence time of the conditional box,pre-post)was significantly increased than that of the blank group on the 3rd day after modeling(P<0.01).On the 9th days,the CPA score of the model group was significantly increased than that of the blank group(P<0.01),and the CPA score of the electroacupuncture group was significantly decreased than that of the model group(P<0.01).Compared with the 3rd day after modeling,the CPA score of the model group increased significantly on the 9th day after modeling(P<0.01),and the electroacupuncture group decreased significantly(P<0.05).The results of IF showed that the expression of p-ERK immunoreactive cells in the model group was increased than that in the blank group and the electroacupuncture group on the left S1HL.In the right S1HL and bilateral ACC regions,the expression of p-ERK immunoreactive cells in the model group was significantly increased than that in the blank group and the electroacupuncture group(P<0.01).Western Blotting results showed that the expression of p-ERK1/2 protein in model group was not significantly different from that in blank group in bilateral S1HL.In left S1HL,the level of p-ERK1/2 protein in electroacupuncture group was significantly decreased than that in model group(P<0.05).On the right side of S1HL,the level of p-ERK2 protein in electroacupuncture group was significantly decreased than that in model group(P<0.05).In bilateral ACC,the level of p-ERK1/2 protein in model group was increased than that in blank group,while that in electro-acupuncture group was decreased than that in model group.Conclusion:Electroacupuncture can increase the mechanical pain threshold of CFA model rats and alleviate the aversion of CFA rats; this effect may be related to down-regulation of p-ERK expression in the right S1HL and down-regulation of p-ERK expression in bilateral ACC regions.
Key Words Electroacupuncture; Chronic inflammatory pain; Phosphorylated extracellular regulated protein kinases; Anterior cingulate cortex; Somatosensory cortex; Pain sensory; Pain affect; Rat
中图分类号:R245.9+7文献标识码:Adoi:10.3969/j.issn.1673-7202.2019.06.003
国际疼痛研究学会(IASP)于1994年将疼痛定义为一种与组织损伤或潜在损伤相关的不愉快的主观感觉和情绪体验。疼痛被赋予了痛感觉(Pain Sensation)和痛情绪(Pain Affect)的双重含义。临床研究报道30%~50%的慢性痛患者会出现焦虑、抑郁、回避等负面情绪[1],此种不良情绪长期伴随着疼痛本身,严重影响患者的镇痛疗效和生命质量。以往对慢性痛的研究多集中在痛感觉层面,在整体至分子水平都取得了巨大进展,而对痛情绪的研究却鲜见报道。临床治疗此类患者时除使用常规镇痛药物外,会加用抗焦虑抑郁药,虽有一定临床疗效,但不良反应大,不宜长期服用[2]。针灸作为治疗慢性痛的有效手段,可以有效抑制炎性痛、神经病理性痛、癌性痛等多种急慢性疼痛[3-5]。临床上,针灸对抑郁、焦虑、失眠等情绪障碍性疾病治疗作用也已得到广泛认可[6-7]。本研究以CFA诱导的慢性炎性痛大鼠为模型,观察电针改善痛行为和痛情绪效应及其对情绪相关脑区ACC和感觉相关脑区S1HL区p-ERK表达的影响,探讨电针干预痛感觉和痛情绪的可能机制。
1 材料与方法
1.1 材料
1.1.1 动物 100只健康成年清洁级雄性SD大鼠,体质量200~250 g(浙江中医药大学实验动物中心提供)。每笼5只饲养于浙江中医药大学实验动物中心,饲养环境:室温23~25 ℃,湿度40%~60%,自由饮水进食,12 h循环灯光。实验过程中对动物的处置遵照中华人民共和国科学技术部2006年颁布的《关于善待实验动物的指导意见》。
1.1.2 试剂与仪器 Von Frey纤维丝测痛仪(美国stoelting公司),CPA箱(深圳市瑞沃德生命科技有限公司),HANS-200A穴位暨神经刺激仪(联创科技南京济生医疗科技有限公司),激光共聚焦扫描显微镜(日本Nikon,A1R-A1),M4酶标仪(MD公司),电泳-转印系统(美国Bio-Rad公司),p-ERK1/2(Thr202/Tyr204)(美国Cell Signaling Technology,批号:4370S),ERK1/2(美国Cell Signaling Technology,批号:4695),Alexa Fluor594-AffiniPure(美国abcam,批号:ab150080),抗荧光淬灭封片液(碧云天公司,批號:P0128),BCA试剂盒(碧云天公司,批号:P0010),正常山羊封闭血清(郑州益康生物工程有限公司,批号:20160607),超敏ECL化学发光试剂盒(碧云天公司,批号:P0018),IgG Goat Anti-Rabbit IgG(H+L)(美国Bio-Rad,批号:1721011)。
1.2 方法
1.2.1 分组与模型制备 该实验分为两部分,38只雄性SD大鼠用于检测痛感觉,随机分为空白组(n=11)、模型组(n=13)、电针组(n=14);62只雄性SD大鼠用于检测痛情绪,随机分为空白组(n=21)、模型组(n=21)、电针组(n=20)。造模时,抽取0.1 mL完全弗氏佐剂(Freund′s Adjuvant,Complete,sigma),皮下注射在模型组和电针组大鼠左后足底。空白组在相同的部位注射0.1 mL的生理盐水。
1.2.2 干预方法 使用HANS-200A穴位暨神经刺激仪对实验动物进行电针干预。参照《实验动物穴位图谱》中大鼠“后三里”的定位,选取大鼠双侧“后三里”穴进行电针刺激。电针参数:恒流方波输出(脉冲宽度:0.6 ms 2 Hz,0.2 ms 100 Hz),初始强度1.0 mA,每10 min增加0.5 mA,递增至2.0 mA,共计30 min。2 Hz和100 Hz 2种频率交替工作。1次/d,连续7 d(模后第3天到第9天)。针灸针:华佗牌,0.22 mm×13 mm。同时,其余组予以同等抓取固定以平衡处理因素。
1.2.3 检测指标和方法 1)机械缩足阈(PWTs)检测:使用von Frey纤维丝测定大鼠左侧后肢足底的机械痛阈值。将大鼠置于金属网上,盖以透明的有机玻璃罩(20 cm×10 cm×15 cm),待大鼠安静后,用von Frey纤维丝刺激大鼠后肢足底中部,直至弯曲成S形,持续刺激6~8 s,观察动物是否出现缩足反应。若大鼠在刺激时间内或在移开von Frey纤维丝时立即出现快速的缩足或舔足反应,则记为阳性反应。实验所用von Frey纤维力度分别为0.4 g,0.6 g,1.0 g,2.0 g,4.0 g,6.0 g,8.0 g,15.0 g,26.0 g。测定首先从中等力度的von Frey纤维丝(4 g)开始,当该力度的von Frey纤维刺激不能引起阳性反应时,则给予相邻大一级力度的纤维刺激;如出现阳性反应,则给予相邻小一级力度的刺激,如此连续进行,直至出现第一次阳性和阴性(或阴性和阳性)反应的骑跨,再以此原则连续测定4次。不同刺激之间相隔30 s,以消除前一刺激的影响。根据公式50% PWT(g)=(10[xf+kδ])/10 000,计算每只大鼠50%爪缩阈值。26.0 g是本法可能达到的最大50%缩足阈值,0.4 g是本法可能达到的最小50%缩足阈值。
机械阈值检测时间点:造模前1 d(基础痛阈),模后3 d、6 d、9 d。若模型组和电针组大鼠在模后第3天的痛阈相较基础痛阈值明显降低(P<0.01),表明制备大鼠CFA慢性炎性痛模型成功。
2)CPA行为学检测:使用CPA检测大鼠的条件位置厌恶情绪。该实验分为4部分,自由跑动(free day):取出装置中间的隔板,使A(黑底且均匀分布白色三角形)、B箱联通(白底且均匀分布黑色圆形),拍摄并记录15 min内大鼠在装置中活动的轨迹。剔除标准:大鼠在A或B室停留>80%或者<20%;条件化前(Pre-conditioning Day):插入位于中间的隔板,隔开A、B箱,将A、B分隔成2个相对独立的空间,选定A或B作为“非条件箱”,将大鼠放入其中,自由活动45 min以适应非痛环境;条件化第1天(Conditioning Day-1):造模后2 h大鼠足部出现红肿热痛即将大鼠放入条件箱(疼痛环境)。大鼠在疼痛环境适应45 min后,取出大鼠至饲养笼,完成当日行为学检测。条件化第2天(Conditioning Day-2):操作时间及环境同第1天,将大鼠放入条件箱,继续让大鼠在条件箱适应45 min,取出大鼠至饲养笼,完成当日行为学检测;条件化后自由跑动(Post-conditioning Day):造模后第3天、9天,拿出隔板,使A、B箱联通,拍摄并记录15 min内大鼠在装置中活动的轨迹。为保证实验效果,每只大鼠实验结束后整个装置需要用75%乙醇擦拭,待装置干净无味再继续实验。若大鼠模后第3天在条件箱停留的时间少于造模前在该室停留的时间,说明大鼠因为疼痛对条件箱产生了厌恶,即成功建立CFA诱导慢性炎性痛的CPA模型。
3)免疫荧光染色:造模后第10天,大鼠腹腔注射7%水合氯醛麻醉(350 mg/kg)。暴露胸腔,经左心室向升主动脉灌注约200 mL的0.9%生理盐水(4 ℃冰箱预冷)和150 mL 4%的多聚甲醛,将大鼠置于冰台取出全脑,随后在4%多聚甲醛溶液中固定24 h,分别经15%和30%蔗糖溶液梯度脱水后,液氮速冻放入-80 ℃低温冰箱储存备用。以25 μm的厚度分别在前囟前3.7 mm和前囟后1.2 mm切取ACC和S1HL脑片进行免疫荧光染色。采用贴片法在各组分别取出脑组织(ACC、S1HL)5片,用含有5%的BSA、0.3%Triton溶液(0.01 mol/L TBST溶液稀释)37 ℃水浴箱孵育1 h,加入含5%BSA的一抗混合液(rabbit-anti-pERK,1∶400)(TBST稀释)的p-ERK一抗,放入湿盒在4 ℃孵育16 h,用PH7.4的TBST溶液漂洗3次,10 min/次,加入用0.01 mol/L TBST稀释的含5%BSA的荧光二抗混合液(Alexa Fluor 594-goat anti-rabbit 1∶500)的二抗,37 ℃水浴箱避光孵育1 h。TBST避光漂洗6次,10 min/次,组织干燥后,用抗荧光淬灭剂封片。采用Nikon A1R激光共聚焦顯微镜在10倍物镜下拍摄图像,观察大鼠双侧ACC及S1HL的p-ERK的阳性细胞数。每组选择3只大鼠,每只大鼠选取5张ACC和S1HL切片,用NIS elements AR软件统计相应区域阳性细胞数,根据文献[8-9]可知在ACC第Ⅲ层阳性细胞的表达率高,因此结合实验结果选取第Ⅲ层进行计数。S1HL区p-ERK的表达主要集中在第Ⅱ/Ⅲ层,因此选取第Ⅱ和Ⅲ层进行计数[10-11]。
4)免疫印迹法:造模后第10天,大鼠腹腔注射7%水合氯醛麻醉(350 mg/kg)。用4 ℃预冷的0.9%生理盐水迅速灌注升主动脉后快速取出全脑。根据大鼠脑立体定位图谱《The Rat Brain in Stereotaxic Coordinates》[12]确定ACC取材范围:前囟(Bregma)(+3.2 mm)~(+1.7 mm),左右旁开0.8 mm,深度2.6 mm。S1HL取材范围:前囟(Bregma)(-0.5 mm)~(-2.5 mm),左右旁开1.0 mm,深度2.0 mm。液氮速冻后放入-80 ℃冰箱储存备用。将大鼠组织经过RIPA裂解液裂解,于冰上匀浆,低温离心后取上清液,BCA法进行蛋白定量。按照试剂说明书经过SDS-PAGE电泳、转膜、封闭,加入p-ERK1/2(Thr202/Tyr204)一抗(1∶2 000)4 ℃孵育过夜(18 h),加入IgG(H+L)-HRP二抗(1∶3 000)室温孵育1 h,ECL化学发光显影。Image Quant TL软件对条带灰度值进行半定量分析,即将各组p-ERK1/2的灰度值除以ERK1/2的灰度值,算出各组的磷酸化的相对表达水平,然后把空白对照组的相对表达量作为1倍数,其他组相对空白对照组的比值(增加倍数)则作为柱状图的纵坐标。
1.3 统计学方法
实验结果采用均数±标准误(±s)表示。使用SPSS 19.0软件进行统计和分析,多组间比较选用单因素方差分析(ANOVA),组间两两比较采用LSD检验。PWTs数据采用重复测量方差分析,组间两两比较,方差齐性时采用LSD检验,方差不齐时采用Dunnett′s T3检验。以P<0.05为差异有统计学意义。
2 结果
2.1 电针对CFA诱导的慢性炎性痛大鼠机械痛阈的影响
大鼠造模前、造模后第3天、6天、9天的机械痛阈的测量结果显示,造模前,空白组、模型组、电针组大鼠的机械痛阈值无统计学意义(P>0.05)。造模后第3天、6天、9天,与空白组比较,模型组、电针组机械痛阈值显著降低(P<0.01),说明CFA诱导的慢性炎性痛模型成功。而造模后第9天,与模型组比较,电针组机械痛阈值显著升高(P<0.01)。见图1。
2.2 电针对CFA诱导的慢性炎性痛大鼠厌恶情绪的影响
大鼠CPA结果显示,造模前,空白组、模型组、电针组在条件箱与非条件箱停留的时间无统计学意义。造模后第3天,与空白组比较,模型组和电针组CPA score值显著升高(P<0.01);造模后第9天,与模型组比较,空白组和电针组CPA score值显著降低(P<0.01)。与造模后第3天比较,造模后第9天模型组CPA score值显著增加(P<0.01),电针组CPA score值显著降低(P<0.05)。见图2。
2.3 电针对CFA诱导的慢性炎性痛大鼠S1HL及ACC区p-ERK免疫阳性细胞数及蛋白表达的影响如图3~图6所示,编号A、B、C图分别代表双侧S1HL脑区、双侧ACC脑区的空白组、模型组、电针组p-ERK免疫阳性细胞荧光图;图D是对应的p-ERK免疫阳性细胞统计图;图E、G分别是CFA模后10 d时,S1HL、ACC水平p-ERK的免疫印跡结果图和灰度统计图;图F中红框区域是图A~C在大鼠冠状位脑片位置(AP+2.7 mm;AP-1.5 mm),图中白色箭头为阳性点。
免疫荧光结果:左侧S1HL,与空白组比较,模型组p-ERK免疫阳性细胞的表达有上升趋势;与模型组比较,电针组p-ERK免疫阳性细胞的表达有下降趋势。右侧S1HL和双侧ACC,与模型组比较,空白组和电针组p-ERK免疫阳性细胞的表达均显著降低(P<0.01)。
免疫印迹结果:左侧S1HL,与模型组比较,电针组p-ERK1/2蛋白水平明显下降(P<0.05)。右侧S1HL,与模型组比较,电针组p-ERK2蛋白水平明显下降(P<0.05)。双侧ACC脑区,与空白组比较,模型组p-ERK1/2蛋白水平有上升趋势;与模型组比较,电针组p-ERK1/2蛋白水平有下降趋势。
3 讨论
疼痛具有感觉和情绪双重含义,疼痛在感觉维度上体现了对于伤害性刺激的感觉成分的辨别,如性质、强度、定位、时间过程,主要接受外侧疼痛系统调控。痛相关的负面情绪与疼痛长远的影响密切相关。痛情绪维度上表现出了疼痛的情感动机成分,其中包括机体产生的厌恶程度(对受到的疼痛刺激),和动机强弱(躲避疼痛),它的神经元活动基础位于内侧丘脑、杏仁核和边缘皮层[13-14]。目前关于疼痛的研究也逐渐从单一关注痛感觉发展为同时关注痛感觉、痛情绪、痛认知等多维度。研究者们逐渐把疼痛理解为是一种高度主观的多维度的体验。
中枢神经系统是一个与疼痛相联系的神经网络,包括了感觉维度、情绪维度和认知维度,和部分潜在的可分离的神经网络[15-16],ACC和S1HL分别是大脑中与情绪和感觉相关的重要脑区。ACC主要功能是对疼痛的情绪信息进行编码,前扣带皮层吻侧区(rACC)是加工疼痛情绪的特异性脑区。研究显示[17]在ACC的cAMP/PKA通路,可能通过CREB的磷酸化,参与到痛敏反应及痛情绪的发展过程。而在脊髓背角MAPK/CREB通路可能涉及到痛情绪反应[18]。
细胞外调节蛋白激酶属于丝裂原活化蛋白激酶(Mitogen-activated Protein Kinases,MAPKs)家族的一员。研究证明,ERK参与调节神经元可塑性(长时程增强、长时程抑制)与记忆密切相关。在疼痛状态下,能长期有效的激活ERK1/2的磷酸化,特别在初级体感皮层SI、海马、脊髓。在正常大鼠的SI,ERK2的表达多于ERK1,ERK的磷酸化表达较少[19]。ACC中p-ERK的表达对于痛情绪的调节起到了至关重要的作用[20],ACC中ERK的活化参与到了足底注射福尔马林或足底手术切口疼痛诱导的焦虑、抑郁等负性情绪过程[21]。Zhong等[22]认为缓解p-ERK的过度激活是对于痛相关焦虑情绪的一种极具潜在价值的治疗方法。SNL大鼠ACC中ERK的激活上调也伴随着大鼠的焦虑样行为的加重,通过针刺能下调其ERK的激活[23]。本实验结果表明,在慢性痛的条件下,体感皮层ERK的磷酸化表达增加,且主要表达在SI的Ⅱ/Ⅲ层,与R.K.Hofbauer的研究成果相似[24]。结果提示CFA大鼠模后9 d,右侧体感皮层p-ERK表达水平显著上调与痛感觉的刺激密切相关。
临床和实验研究反复证明,针灸是治疗慢性痛的有效手段,已从整体、细胞、分子、基因水平深刻阐释了始动、外周、中枢的针灸镇痛原理[25-27]。随着对痛情绪在慢性痛发展过程中重要性的认识,已有研究发现针灸对疼痛诱发的情绪改变有治疗作用。针刺对痛感觉的干预机制不是针刺镇痛的全部机制,电针对慢性痛发展过程中痛情绪的调节,可能是针刺镇痛又一关键机制。本实验结果显示,在模后3 d,除空白组外大鼠机械痛阈值显著降低,说明CFA诱导的慢性炎性痛模型成功。从造模后第3天到第9天予以2/100 Hz电针干预后,与模型组比,电针组机械痛阈值显著升高。说明电针对慢性炎性痛起到了镇痛作用。CPA实验的结果表明,通过电针的干预,大鼠由疼痛诱导的厌恶情绪得到了改善。接下来对S1HL区p-ERK表达水平的检测表明电针可能通过下调右侧体感皮层p-ERK表达水平发挥镇痛作用。而起到改善疼痛诱发的厌恶情绪的作用可能是下调了ACCp-ERK表达的结果,这也验证了Zhong等认为的[22]抑制p-ERK的过度激活是对于痛相关厌恶情绪的一种极具潜在价值的治疗方法。也与我们前期得出的结果相一致[23]。
综上所述,本实验通过足底注射CFA复制慢性炎性痛大鼠模型,通过PWTs和CPA实验以及对大脑S1HL和ACC中p-ERK表达水平的检测,证明电针可提高CFA模型大鼠痛阈水平并缓解CFA大鼠的厌恶情绪,达到降低痛感觉和改善痛情绪的双重目的,其机制可能是电针下调了右侧S1HL和双侧ACC中p-ERK的表达水平。本实验分开验证电针干预痛感觉和痛情绪相关脑区的作用机制,大脑是一个复杂的系统,各脑区之间有着千丝万缕的联系,通过相互影响发挥作用,S1HL与ACC之间可能存在的解剖和功能上的相互联系,需要在今后的研究当中进一步证明。
参考文献
[1]Vincent A,Whipple M O,Mcallister S J,et al.A cross-sectional assessment of the prevalence of multiple chronic conditions and medication use in a sample of community-dwelling adults with fibromyalgia in Olmsted County,Minnesota[J].Bmj Open,2015,5(3):e006681.
[2]CADTH.Gabapentin for Adults with Neuropathic Pain: A Review of the Clinical Evidence and Guidelines[J].Canadian Agency for Drugs and Technologies in Health,2014,Sep 26:1569.
[3]Du J Y,Fang J Q,Liang Y,et al.Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain[J].Brain Research Bulletin,2014,108:27-36.
[4]Zhang R,Lao L,Ren K,et al.Mechanisms of Acupuncture-Electroacupuncture on Persistent Pain[J].Anesthesiology,2014,120(2):482-503.
[5]施任怡,付桃芳,蔡楊乾,等.电针抗骨癌痛大鼠吗啡耐受效应及其对蓝斑核μ阿片受体内吞的调控[J].针刺研究,2019,44(3):161-169.
[6]Smith C A,Hay P P,Macpherson H.Acupuncture for depression[J].Cochrane database of systematic reviews(Online),2010,20(1):CD004046.
[7]Chen Y F,Liu J H,Xu N G,et al.Effects of acupuncture treatment on depression insomnia: a study protocol of a multicenter randomized controlled trial[J].Trials,2013,14(1):2.
[8]吴敏范,滕国玺.扣带回的形态结构[J].解剖科学进展,2000,6(4):329-331+343.
[9]Sikes R W,Vogt B A.Nociceptive neurons in area 24 of rabbit cingulate cortex[J].Journal of Neurophysiology,1992,68(5):1720-1732.
[10]Dupont E,Stevens L,Cochon L,et al.ERK Is Involved in the Reorganization of Somatosensory Cortical Maps in Adult Rats Submitted to Hindlimb Unloading[J].PLOS ONE,2011,6(3):e17564.
[11]Buitrago M M,Luft A R,Thakor N V,et al.Effects of somatosensory electrical stimulation on neuronal injury after global hypoxia-ischemia[J].Experimental Brain Research,2004,158(3):336-344.
[12]G.Watson C.Paxinos.The Rat Brain in Stereotaxic Coordinates [M].New York: Academic Press,2013.
[13]Jones A K P,Brown W D,Friston K J,et al.Cortical and subcortical localization of response to pain in man using positron emission tomography[J].Proc Biol Sci,1991,244(1309):39-44.
[14]Zussy C,Gómez-Santacana,X,Rovira X,et al.Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4[J].Molecular Psychiatry,2016,223:509-520.
[15]Apkarian A V,Bushnell M C,Treede R D,et al.Human brain mechanisms of pain perception and regulation in health and disease[J].European Journal of Pain,2005,9(4):463-463.
[16]Grant JA,Courtemanche J,Rainville P.A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators[J].Pain,2011,152(1):150-156.
[17]Wei F,Qiu C S,Kim S J,et al.Genetic elimination of behavioral sensitization in mice lacking calmodulin-stimulated adenylyl cyclases[J].Neuron,2002,36(4):713-726.
[18]Ji R R,Befort K,Brenner G J,et al.ERK MAP Kinase Activation in Superficial Spinal Cord Neurons Induces Prodynorphin and NK1 Upregulation and Contributes to Persistent Inflammatory Pain Hypersensitivity[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2002,22(2):478.
[19]Guo SW,Liu MG,Long YL,et al.Region-or state-related differences in expression and activation of extracellular signal-regulated kinases(ERKs)in nave and pain-experiencing rats[J].BMC Neurosci,2007,8:53-65.
[20]Cao H,Ren W H,Zhu M Y,et al.Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain[J].Neuroscience Bulletin,2012,28(1):77-87.
[21]Maoying Q L,Ren D H,Mi W L,et al.Analgesic effects of electroacupuncture combined with celebrex on rats with tibial cancer pain[J].Journal of Chinese Integrative Medicine,2008,6(8):830-835.
[22]Zhao Z L,Zhao G W,Li H Z,et al.Acupuncture Attenuates Anxiety-Like Behavior by Normalizing Amygdaloid Catecholamines during Ethanol Withdrawal in Rats[J].Evid Based Complement Alternat Med,2010,2011(2):429843.
[23]Xiao-Mei S,Zui S,Jing S,et al.Strong Manual Acupuncture Stimulation of “Huantiao”(GB 30)Reduces Pain-Induced Anxiety and p-ERK in the Anterior Cingulate Cortex in a Rat Model of Neuropathic Pain[J].Evidence-Based Complementary and Alternative Medicine,2015,2015:1-11.
[24]Johansen J P,Fields H L,Manning B H.The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex[J].Proceedings of the National Academy of Sciences,2001,98(14):8077-8082.
[25]Du J Y,Fang J Q,Liang Y,et al.Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain[J].Brain Research Bulletin,2014,108:27-36.
[26]Zhang R,Lao L,Ren K,et al.Mechanisms of Acupuncture-Electroacupuncture on Persistent Pain[J].Anesthesiology,2014,120(2):482-503.
[27]Li Q,Yue N,Liu S B,et al.Effects of Chronic Electroacupuncture on Depression-and Anxiety-Like Behaviors in Rats with Chronic Neuropathic Pain[J].Evidence-Based Complementary and Alternative Medicine,2014,2014:1-10.
(2019-05-10收稿 責任编辑:徐颖)