APP下载

生物质炭对烟草青枯病的防控作用及应用前景分析

2019-09-10王成己郭学清曾文龙陈庆河唐莉娜黄毅斌

南方农业学报 2019年8期
关键词:病原菌

王成己 郭学清 曾文龙 陈庆河 唐莉娜 黄毅斌

摘要:煙草青枯病是由茄科劳尔氏菌(Ralstonia solanacearum)引起的土传细菌性病害,该病害分布广、危害重、毁灭性强,是热带、亚热带烟区的主要病害。生物质炭是生物质材料在厌氧高温条件下热裂解产生的高度芳香化的富碳物质,具有丰富的官能团、发达的孔隙结构和较强的吸附能力,对改善烟田土壤环境具有较大潜力,是减轻或抑制烟草青枯病的长效途径,具有广阔应用前景。文章结合国内外研究情况综述了农业、化学及生物等措施防控烟草青枯病的研究现状,认为单一的农业、化学或生物措施防控烟草青枯病的效果均不理想,农药或土壤改良剂对土壤、植株、牲畜及环境造成破坏,影响生态安全;综合防控措施可消除单一措施带来的短板效应。文章提出利用生物质炭定向调控烟田根际微生物、重建健康根际生态系统、减轻或抑制烟草青枯病的途径:(1)改善土壤理化性状;(2)提升土壤肥力;(3)改善土壤微生物多样性;(4)提高土壤酶活性。生物质炭通过调控土壤生境来改善烟草农艺性状,减轻或抑制烟草青枯病发生,同时促进烟草碳氮代谢,有效调控烟叶化学品质。生物质炭的农业应用可为全面解决烟草连作障碍提供技术参考。

关键词: 生物质炭;烟草青枯病;病原菌;土壤微生物区系;防控作用

中图分类号: S435.72                          文献标志码: A 文章编号:2095-1191(2019)08-1756-08

The prevention and control effects of biochar on tobacco bacterial wilt and its application prospects

WANG Cheng-ji1, GUO Xue-qing2, ZENG Wen-long3, CHEN Qing-he4,

TANG Li-na5, HUANG Yi-bin6*

(1Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences/Fuzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Fuzhou  350013, China; 2Changting Tobacco Company of Fujian Province, Changting, Fujian  365500, China; 3Longyan Tobacco Company of Fujian Province, Longyan, Fujian 364000, China; 4Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou  350013, China; 5Tobacco Science Research Institute, Fujian Tobacco Monopoly Bureau, Fuzhou  350003, China; 6Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou  350013, China)

Abstract:Tobacco bacterial wilt is a soil-borne bacterial disease caused by Ralstonia Solanacearum, which is a major disease in tropical and subtropical tobacco areas. It spreads widely and causes devastating damage. Biochar is a highly aromatic carbon-rich material produced by pyrolysis of biomass material under anaerobic high temperature. It has rich functional groups, developed pore structure and strong adsorption capacity. It has great potential to improve the soil environment of tobacco fields, and is a long-term approach to reduce or inhibit tobacco bacterial wilt. This paper reviewed the research status of agricultural, chemical and biological measures to prevent and control tobacco bacterial wilt at home and abroad. It was concluded that single agricultural, chemical and biological measures to prevent and control tobacco bacte-rial wilt were not ideal. The pesticides or soil amendment would damage the soil, plants, livestocks and environment, and affect ecology safety. Comprehensive prevention and control measures could eliminate the shortcomings brought by a single measure. The methods of using biochar to regulate tobacco rhizosphere microorganisms, rebuild healthy rhizosphere ecosystem, and reduce or inhibit tobacco bacterial wilt were put forward. The methods could(1)improve soil physical and chemical properties; (2)improve soil fertility; (3)improve soil microbial diversity; (4)improve soil enzyme activity. By regulating soil habitat, biochar could improve the agronomic properties of tobacco, reduce or inhibit the onset of tobacco bacterial wilt, promote the carbon and nitrogen metabolism of tobacco, and effectively regulate the chemical quality of tobacco leaves. The agricultural application of biochar can provide technical reference for the comprehensive solution of tobacco continuous cropping obstacles.

Key words: biochar; tobacco bacterial wilt; pathogen; soil microflora; prevention and control effects

0 引言

烟草是我国重要的经济作物,国家统计局的信息显示,2017年我国烟草种植面积为113.1万ha,烟叶产量为239.1万t,其中烤烟面积和产量分别为108.1万ha和227.9万t。烟草长期连作导致植烟土壤板结、pH失衡、有机质活性降低(Chen et al.,2018),加之我国主要烟区气温高、空气湿度大等环境因素,导致烟草土传病害在我国东南和西南烟区普遍发生,甚至在个别年份暴发流行(蒋岁寒等,2016)。烟草青枯病由茄科劳尔氏菌(Ralstonia solanacearum)引起,是一种分布广、危害重、毁灭性极强的土传细菌性病害,严重影响烟叶生产(Liu et al.,2015)。青枯病已成为热带、亚热带地区烟田的主要病害,在全球气温变暖的背景下,青枯病向高纬度、高海拔地区蔓延,对烟草生产造成极大威胁(孔凡玉,2003)。生物质炭(Biochar)是生物质材料在厌氧高温条件下热裂解产生的高度芳香化的富碳物质(Antal and Gronli,2003)。生物质炭的土壤改良与缓释效应使其成为调控土壤连作障碍(王成己等,2018b)及实施土壤健康管理的重要途径(刘晓雨等,2018)。文章在分析烟草青枯病成因及危害的基础上,剖析传统农业、化学及生物措施防治烟草青枯病的优缺点,阐释生物质炭防控烟草青枯病的途径和作用机制,为全面解决烟草连作障碍提供技术参考。

1 烟草青枯病的病原及致病机制

烟草长期连作导致植烟土壤营养元素、pH和微生态等严重失衡,连作障碍问题日趋严重(Li et al.,2014)。烟草土传病害的发生与根际土壤微生物数量、区系和群落结构密切相关,是根际土壤微生物群体相互作用的结果(施河丽等,2018)。植烟土壤营养元素含量与烟草青枯病有密切关系(黎妍妍等,2018)。郑世燕等(2014)研究表明,青枯病发病烟株根际土壤中交换性钙、有效硼、有效钼等矿質营养含量显著高于健康烟株根际土壤,土壤中有效钼、交换性钙含量可能是影响青枯病发生的关键土壤营养因子。而pH、磷、钾、钙和铜是对根际土壤细菌群落影响较大的土壤环境因子(施河丽等,2018)。

烟草青枯病是典型的土传细菌性维管束植物病害,主要发生在烟草根、茎和叶等部位,发病时由叶片萎缩到根系腐烂,最后整株烟草枯萎。病原茄科劳尔氏菌尽管在烟株维管束中蔓延扩增,但仍主要分布于土壤中。存活在土壤中的青枯菌通过土壤翻耕或灌溉、除草等途径传播到植株根部,然后从植物根部进入木质部,通过脂多糖识别寄主,产生胞外多糖造成维管束阻塞,与此同时分泌胞外蛋白酶降解细胞壁,导致寄主植物快速萎蔫(McGarvey et al.,1999)。青枯菌对土壤细菌群落的影响远大于烟株。因此,青枯病防治不能局限于烟株本身,应从植烟土壤入手加大防治力度(向立刚等,2019)。

2 烟草青枯病的防治措施

作为烟草生产最主要病害之一,烟草青枯病一直受到国内外科研人员的广泛关注,分别从农业、化学及生物学等角度开展了大量防控研究,并取得了一些重要进展。

2. 1 农业防治措施

(1)耕作措施。研究表明,不同种植模式(穰中文等,2018)、绿肥—烟草轮作(张超,2016)和稻草溶田(章文水等,2019)可增加土壤微生物多样性及土壤酶活性,改善土壤微生境,减轻或降低烤烟青枯病发病率和发病程度。深耕改变了土壤环境条件,切断土壤病虫害的传播途径,从而抑制土壤病虫的发生和繁殖(谢永辉等,2015)。(2)均衡营养。烟株营养状况与其抗病性密切相关,定期向烟株增施钼、钙等营养元素可增强烟草防御青枯病的能力(郑世燕等,2014)。施钾提高了植物木质化程度,使植物细胞壁、茎秆和叶片等功能器官变厚,从而提高植物抗病性(Wang et al.,2013)。施用钾肥增加烟草根际土壤微生物的多样性和益生菌数量,减少青枯病病原菌在土壤中的相对丰度(陈娜,2018);同时加快酚类物质合成,提高与抗病相关的总酚含量及叶片的钾含量,减少病原菌入侵(Dordas,2008)。(3)农事操作。平整烟地、调整烟草移栽时间等措施也能在一定程度上减少细菌及真菌性病害发生。

2. 2 化学防治措施

早期生产上主要依靠化学药剂来控制和减轻烟草青枯病危害,效果稳定且用于生产的药剂有链霉素、琥珀酸铜、青枯灵和自制石硫合剂等。李大鹏和朱三荣(2008)研究表明,药签插茎与灌蔸相结合的方法有助于防控烟草青枯病。陈泽鹏等(2011)研究表明,苯并噻二唑(BTH)具有显著的诱导抗病效应。72%农用硫酸链霉素和20%青枯灵也可有效抑制烟草青枯病的发作(赖荣泉和钟秀金,2015)。化学农药虽然能在短期内控制病害发生和传播,但过量使用化学药剂既损害烟叶品质又污染环境(李想等,2017)。一些抑制烟草青枯病的农药或土壤改良剂对土壤、植株、牲畜及环境造成破坏,影响生态安全。

2. 3 生物防治措施

内生菌作为烟草生长发育和代谢过程中不可或缺的一部分,在与宿主相互作用下形成相似或相同的功能(姚领爱等,2010)。苗期接种菌根真菌可有效防控烟草青枯病(曾维爱等,2011)。感染内生菌的烟草能增强其抗病原菌、害虫等生物抗性,是绿色、安全的生物防控技术(张梦旭等,2017;张鹏等,2017)。芽胞杆菌是土壤和植物微生态中的优势微生物种群,具有较强抗菌防病能力,一些优良菌株已成功应用于植物病害防治(姜乾坤等,2017)。从青枯病发病烟田中健康烟株根际土壤中筛选获得的XC4菌株(许大凤等,2016)、以及从烟田中分离出的解淀粉芽孢杆菌和甲基营养型芽孢杆菌(夏艳等,2014)对烟草青枯病均具有较好的防控效果。

3 生物质炭对烟草青枯病的防控作用

烟草连作障礙产生的根本原因是土壤微生态失衡,因此,利用生物质炭定向调控烟田根际微生物,重建健康根际生态系统,可增加土壤有益微生物,改善根区微生境(陈庆荣等,2016;王成己等,2017a),减轻或抑制烟草青枯病发生,并最终克服烟草连作障碍(王成己等,2018b)。

3. 1 生物质炭特性

生物质炭由生物质材料在厌氧高温条件下热裂解形成,生物质材料及炭化条件的不同,导致生物质炭的性质和施用效应也存在差异(邱良祝等,2017)。近年来,随着生物质热裂解技术及产业化水平的提高(潘根兴等,2015),社会各界对生物质炭特性的认知度也不断提高,农作物秸秆炭化还田—土壤改良技术得到深入研究和广泛应用(王成己等,2018a),成为土壤可持续管理的重要途径(陈温福等,2014)。

(1)物理特性。生物质材料热裂解后保留了原生物质的孔隙结构,从而使生物质炭具有较大的孔隙度和比表面积(Cornelissen et al.,2004)。不同材料和裂解方式对生物质炭比表面积影响很大,有的只有0.7~15.00 m2/g(Ozcimen,2010),有的每平方米可高达几百克(Chun et al.,2004)。在一定温度范围内,随裂解温度升高生物质炭比表面积增加,而产率降低、持水量减少(谢祖彬等,2011)。

(2)化学特性。生物质炭含有碳、氢、氧和氮等元素,碳的质量分数达38%~76%,磷、钾、钙和镁的含量也较高(刘玉学等,2009)。烷基和芳香结构是生物质炭中最主要的成分。施用生物质炭可提高土壤有机碳含量,且能为植物生长提供较多的养分。生物质炭一般呈碱性,在一定范围内,其pH随热解温度升高而增加(吴志丹等,2015;王成己等,2017b)。生物质炭含有的-COO-(-COOH)和-O-(-OH)等含氧官能团及表面负电荷赋予其改良土壤质量的巨大潜力(Wu et al.,2019)。

3. 2 生物质炭防控烟草青枯病的途径

在我国东南和西南烟区,烟草生长前期低温多雨,土壤湿度较大,是烟草土传病害发生的重要气候因素。土壤质地、通气状况、温度、湿度、pH及微生物区系是烟草青枯病发生的重要土壤条件。因此,利用生物质炭改善烟田土壤理化性状、土壤养分、土壤微生物多样性及酶活性,进而改善烟草农艺性状,是防控烟草青枯病的重要途径。

(1)改善土壤理化性状。在烟田施用生物质炭可降低土壤容重、改变土壤三相比(刘卉等,2018),增加土壤田间持水量、土壤总孔隙度和毛管孔隙度,增强土壤透气性(陈懿等,2015),促进烟草生根及前期生长(陈懿等,2017;刘卉等,2017)。土壤酸化促进土壤中铝的溶出,而土壤中过多的铝离子对烟草根系造成伤害,从而更容易被青枯病菌侵入致病。生物质炭呈碱性,可提高酸性土壤pH,降低土壤可溶性铝和有毒形态铝浓度(袁金华和徐仁扣,2010)。利用生物质炭修复酸化植烟土壤,保持烟株营养平衡,从而降低土壤中青枯病病原菌数量,有效控制烟草青枯病的发生(牛桂言等,2017)。

(2)提升土壤肥力。研究表明,添加生物质炭提高了烟田土壤有机质含量、pH和CEC(王成己等,2017a),增加土壤硝态氮、速效氮、速效磷和速效钾含量,降低铵态氮含量(管恩娜等,2016),改善土壤微生态环境(张璐等,2019),增强烟株抗病能力(郑世燕等,2013)。

(3)改善土壤微生物多样性。健康和发病烟田土壤微生物群落结构存在明显差异,健康土壤微生物多样性(陈乾锦等,2019)及有益菌丰度、土壤pH和养分含量(施河丽等,2018)均高于发病土壤。青枯病是烟草生产中的毁灭性土传病害,通过改善土壤微生物多样性,提高羧酸类和聚合物类碳源的利用能力(胡瑞文等,2018),增加有益微生物群的繁殖来抑制病原菌增长,以有效降低青枯病发病率(孙思和王军,2015)。陈懿等(2015)研究表明,生物质炭可改变植烟土壤细菌、放线菌和真菌数量,在改良植烟土壤微生态和调控烤烟生理特性方面具有积极效应。土壤微生物群落结构越丰富、多样性越高,对抗病原菌的综合能力越强(Bonilla et al.,2012)。已有研究表明,生物质炭可改善植烟土壤细菌群落多样性和组成(陈泽斌等,2018;任天宝等,2018),提高根际土壤细菌种类的多样性和分布的均匀程度(陈泽斌等,2018)及土壤微生物AWCD值和多样性指数(张璐等,2019),且烟秆炭对烟草根际土壤微生物群落结构的影响大于小麦秸秆炭(邵慧芸等,2019)。对比研究表明,施用稻壳炭和木屑炭均能改善烟田土壤微生物状况及其对碳源的利用(李成江等,2019),促进以羧酸类和多聚物类物质为碳源的微生物的生长(张璐等,2019),从而减少烟草青枯病的发生。

(4)提高土壤酶活性。施用生物质炭有利于提高烟株根系活力和根冠比(刘领等,2016),增加土壤蔗糖酶、脲酶活性和微生物量碳含量,减少氮素等营养元素流失(吴嘉楠等,2018),但对土壤转化酶和多酚氧化酶活性影响不显著(龚丝雨等,2017)。

(5)改善烤烟农艺性状。烟田添加生物质炭后烤烟株高、有效叶数、最大叶长(宽)和茎围等均有不同程度增加(肖和友等,2018),烟叶产量和上等烟比例增加,且烟叶炭效果明显优于烟草和玉米秸秆炭(李成江等,2019)。而刘月华等(2016)研究表明,稻壳炭对烤烟青枯病的防治效果好于烟秆炭,但前者降低了烟叶产量。此外,施用生物质炭可提高烟叶细菌群落丰度(夏体渊等,2017),促进烟草碳氮代谢,提高上部烟叶钾氯比及中部烟叶总糖、还原糖、钾含量、糖碱比和钾氯比,对烟叶化学品质具有一定调控作用(张弘等,2018)。

3. 3 生物质炭防控烟草青枯病的机制

烟草连作减少了烟田土壤有益微生物数量、改变了微生物群落结构,最终导致土壤微生态失衡。因此,调控土壤微生物区系是防控烟草青枯病的重要切入点。已有的研究表明,改善植烟土壤养分状况和微生物群落结构是生物质炭防控烟草青枯病的主要机理之一。鉴于此,将生物质炭用于烟草青枯病防控就变得切实可行,这也是生物质炭农学和环境效应的具体体现。土壤微生物指示生态系统功能变化为土壤性质变化提供依据,而土壤性质的变化反过来又对土壤微生态改善起到推动作用(王成己等,2018b)。基于此,笔者认为生物质炭防控烟草青枯病的机制为:(1)物理化学机制。生物质炭改善土壤孔隙结构,提高土壤保水保肥及养分固定能力,为土壤微生物提供丰富的养分和能量来源,从而增强土壤微生物活性,提高烟草抗病能力;生物质炭通过提高酸性土壤pH来提高土壤养分利用率和微生物活性,增强菌根生物功能,进而提高烟草抗病性。(2)生物学机制。生物质炭调控根区土壤有机酸和氨基酸含量,提高羧酸类和聚合物类碳源的利用能力,改善土壤微生态条件,提高土壤微生物数量及活性,促进有益微生物生长,从而抑制病原菌增长。生物质炭对土壤微生物和烟草生长产生积极影响,抑制土壤病原菌生长及对植物的侵染能力。

4 展望

烟草青枯病是典型的土传細菌性维管束植物病害,单一的农业、化学或生物防治措施对烟草青枯病防控效果均不理想,农药或土壤改良剂甚至对土壤环境造成破坏,通过传统方法防控烟草青枯病已近瓶颈。近年来,综合防控措施越来越受到关注,以消除单一措施带来的短板效应。生物质炭含有多种养分元素,具有丰富官能团、发达孔隙结构、较强吸附能力,对改善烟田土壤环境具有较大潜力。通过生物质炭定向调控烟田根际微生物,改善土壤微生境,重建健康的土壤微生物体系,抑制病原菌生长,是减轻或抑制烟草青枯病的长效途径。具体从如下几方面入手:(1)改善土壤理化性状。通过生物质炭改变土壤三相比及孔隙度,增强土壤透气性和田间持水量,促进烟草生根及前期生长,增强烟株抗病性。(2)提升土壤肥力。通过生物质炭提高烟田土壤有机质含量、pH和CEC,增加土壤硝态氮、速效氮、速效磷和速效钾含量,降低铵态氮含量,改善土壤微生态环境,增强烟株抗病能力。(3)改善土壤微生物多样性。通过生物质炭提高发病植烟土壤微生物多样性及有益菌丰度,提高羧酸类和聚合物类碳源的利用能力,增加有益微生物群的繁殖来抑制病原菌的增长,以有效降低青枯病发病率。(4)提高土壤酶活性。通过生物质炭提高烟株根系活力,增加土壤蔗糖酶、脲酶活性和微生物量碳含量,减少营养元素流失。生物质炭通过上述途径改善烟草农艺性状,减轻或抑制烟草青枯病发作,同时促进烟草碳氮代谢,提高上部烟叶钾氯比及中部烟叶总糖、还原糖、钾含量、糖碱比和钾氯比,有效调控烟叶化学品质。

近年来,热裂解生物质炭产业化水平日趋提高,农作物秸秆炭化还田—土壤改良技术得到深入研究和广泛应用,已成为农业绿色发展的新途径。生物质炭在农业、能源和环境等领域的应用前景将会越来越广阔。

参考文献:

陈娜. 2018. 钾肥对烟草青枯病的防控效果及其根际微生物群落的影响[J]. 安徽农业科学,46(22): 125-127. [Chen N. 2018. Control effect of potassium fertilizer on tobacco bacterial wilt and its effect on rhizosphere microbial communities[J]. Anhui Agriculture Sciences,46(22):125-127.]

陈乾锦,林书震,李红丽,李小龙,芦阿虔,沈建平,郭夏丽,王岩. 2019. 邵武烟田土壤微生物群落结构变化与烟草青枯病发生关系初报[J/OL]. 中国烟草学报. https://doi.org/10.16472/j.chinatobacco.2018.352. [Chen Q J,Lin S Z,Li H L,Li X L,Lu A Q,Shen J P,Guo X L,Wang Y. 2019. A preliminary analysis on relationship between soil microbial community structure and tobacco bacterial wilt in Shaowu tobacco field[J/OL]. Acta Tabacaria Sinica. https://doi.org/10.16472/j.chinatobacco.2018.352.]

陈庆荣,王成己,陈曦,唐莉娜,刘岑薇,宋铁英,黄毅斌. 2016. 施用烟秆生物黑炭对红壤性稻田根际土壤微生物的影响[J]. 福建农业学报,31(2): 184-188. [Chen Q R,Wang C J,Chen X,Tang L N,Liu C W,Song T Y,Huang Y B. 2016. Effect of tobacco stalk-derived biochar on microbes in rhizosphere soil at red paddy fields[J]. Fujian Journal of Agriculture Sciences,31(2): 184-188.]

陈温福,张伟明,孟军. 2014. 生物炭与农业环境研究回顾与展望[J]. 农业环境科学学报,33(5): 821-828. [Chen W F,Zhang W M,Meng J. 2014. Biochar and agro-ecological environment: Review and prospect[J]. Journal of Agro-Environment Science,33(5): 821-828.]

陈懿,陈伟,高维常,程建中,林叶春,潘文杰. 2017. 烟秆生物炭对烤烟根系生长的影响及其作用机理[J]. 烟草科技,50(6): 26-32. [Chen Y,Chen W,Gao W C,Cheng J Z,Lin Y C,Pan W J. 2017. Effects of tobacco stalk biochar on root growth of flue-cured tobacco and its action mechanism[J]. Tobacco Science & Technology,50(6): 26-32.]

陈懿,陈伟,林叶春,程建中,潘文杰. 2015. 生物炭对植烟土壤微生态和烤烟生理的影响[J]. 应用生态学报,26(12): 3781-3787. [Chen Y,Chen W,Lin Y C,Cheng J Z,Pan W J. 2015. Effects of biochar on the micro-ecology of tobacco-planting soil and physiology of flue-cured tobacco[J]. Chinese Journal of Applied Ecology,26(12): 3781-3787.]

陈泽斌,高熹,王定斌,郭丽红,王定康,徐胜光. 2018. 生物炭不同施用量对烟草根际土壤微生物多样性的影响[J]. 华北农学报,33(1): 224-232. [Chen Z B,Gao X,Wang D B,Guo L H,Wang D K,Xu S G. 2018. Effects of di-fferent biochar application rates on rhizosphere soil microbial diversity of tobacco[J]. Acta Agriculturae Boreali-Sinica,33(1): 224-232.]

陈泽鹏,王涛,陈伟明,王晓宾,万树青. 2011. 烟草抗青枯病的药剂诱导效应与抑菌增效作用[J]. 烟草科技,(1): 74-78. [Chen Z P,Wang T,Chen W M,Wang X B,Wan S Q. 2011. Inductive effect and synergism of fungicides against tobacco bacterial wilt disease[J]. Tobacco Science & Technology,(1): 74-78.]

龔丝雨,聂亚平,张启明,钟思荣,张世川,何宽信,刘齐元. 2017. 增施生物炭对烤烟成熟期根际土壤酶活性的影响[J]. 江西农业学报,29(10): 54-57. [Gong S Y,Nie Y P,Zhang Q M,Zhong S R,Zhang S C,He K X,Liu Q Y. 2017. Effects of increasing biochar application on soil enzyme activities in rhizosphere of flue-cured tobacco during maturity[J]. Acta Agriculturae Jiangxi,29(10): 54-57.]

管恩娜,管志坤,杨波,董建新,胡希好,阚京军,吴元华,张庆忠,李明光,梁洪波. 2016. 生物质炭对植烟土壤质量及烤烟生长的影响[J]. 中国烟草科学,37(2): 36-41. [Guan E N,Guan Z K,Yang B,Dong J X,Hu X H,Kan J J,Wu Y H,Zhang Q Z,Li M G,Liang H B. 2016. Effects of biochar on tobacco-planting soil quality and flue-cured tobacco growth[J]. Chinese Tobacco Science,37(2): 36-41.]

胡瑞文,刘勇军,周清明,刘智炫,黎娟,邵岩,刘卉. 2018. 生物炭对烤烟根际土壤微生物群落碳代谢的影响[J]. 中国农业科技导报,20(9): 49-56. [Hu R W,Liu Y J,Zhou Q M,Liu Z X,Li J,Shao Y,Liu H. 2018. Effects of bio-carbon on the carbon metabolism of rhizosphere soil microbial communities in flue-cured tobacco[J]. Journal of Agricultural Science and Technology,20(9): 49-56.]

姜乾坤,彭阁,王瑞,谭军,邸慧慧,向必坤,赵秀云,彭五星,董善余. 2017. 抗青枯内生细菌的筛选及其对烟草青枯病的防治效果[J]. 中国烟草科学,38(5): 13-17. [Jiang Q K,Peng G,Wang R,Tan J,Di H H,Xiang B K,Zhao X Y,Peng W X,Dong S Y. 2017. Selection of endophy-tic antagonistic bacteria for control of tobacco bacterial wilt[J]. Chinese Tobacco Science,38(5): 13-17.]

蒋岁寒,刘艳霞,孟琳,朱春波,李想,沈标,石俊雄,杨兴明. 2016. 生物有机肥对烟草青枯病的田间防效及根际土壤微生物的影响[J]. 南京农业大学学报,39(5): 784-790. [Jiang S H,Liu Y X,Meng L,Zhu C B,Li X,Shen B,Shi J X,Yang X M. 2016. Effects of biological organic fertilizer on field control efficiency of tobacco Ralstonia Solanacearum wilt and soil microbial in rhizosphere soil [J]. Journal of Nanjing Agricultural University,39(5): 784-790.]

孔凡玉. 2003. 烟草青枯病的综合防治[J]. 烟草科技,(4): 42-43. [Kong F Y. 2003. Integrated control of tobacco bacterial wilt disease[J]. Tobacco Science & Technology,(4): 42-43.]

赖荣泉,钟秀金. 2015. 不同药剂对烟草青枯病的防治效果[J]. 中国农学通报,31(22): 175-179. [Lai R Q,Zhong X J. 2015. Control effects of different medicaments on tobacco bacterial wilt in tobacco field[J]. Chinese Agricultural Science Bulletin,31(22): 175-179.]

李成江,李大肥,周桂夙,许龙,徐天养,赵正雄. 2019. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响[J]. 作物学报,45(2): 289-296. [Li C J,Li D F,Zhou G S,Xu L,Xu T Y,Zhao Z X. 2019. Effects of different types of biochar on soil  microorganism and rhizome di-seases occurrence of flue-cured tobacco[J]. Acta Agrono-mica Sinica,45(2): 289-296.]

李大鹏,朱三荣. 2008. 链霉素不同施用方法对烟草青枯病的防效[J]. 植物保护,34(4): 151-153. [Li D P,Zhu S R. 2008. Effects of different application methods of streptomycin on tobacco bacterial wilt[J]. Plant Protection,34(4): 151-153.]

李想,劉艳霞,陆宁,蔡刘体,袁有波,石俊雄. 2017. 综合生物防控烟草青枯病及其对土壤微生物群落结构的影响[J]. 土壤学报,54(1): 216-226. [Li X,Liu Y X,Lu N,Cai L T,Yuan Y B,Shi J X. 2017. Integrated bio-control of tobacco bacterial wilt and its effect on soil microobial community structure[J]. Acta Pedologica Sinica,54(1): 216-226.]

黎妍妍,覃光炯,王林,余君,许汝冰,彭五星,饶雄飞. 2018. 清江流域烟区烟草青枯病发生的土壤营养因素分析[J]. 南方农业学报,49(4): 656-661. [Li Y Y,Qin G J,Wang L,Yu J,Xu R B,Peng W X,Rao X F. 2018. Soil nutrient elements affecting the occurrence of tobacco bacterial wilt in Qingjiang River Basin[J]. Journal of Sou-thern Agriculture,49(4): 656-661.]

刘卉,周清明,黎娟,向德明,张黎明. 2018. 长期定位连续施用生物炭对植烟土壤物理性状的影响[J]. 华北农学报,33(3):182-188. [Liu H,Zhou Q M,Li J,Xiang D M,Zhang L M. 2018. Effects of long-term located conti-nuous application of biochar on soil physical properties of planting tobacco[J]. Acta Agriculturae Boreali-Sinica,33(3): 182-188.]

刘卉,周清明,刘勇军,黎娟,张黎明,张明发. 2017. 生物炭对烤烟生长及烟叶质量的影响[J]. 中国农业科技导报,19(10): 73-81. [Liu H,Zhou Q M,Liu Y J,Li J,Zhang L M,Zhang M F. 2017. Effects of biochar on the growth of flue-cured tobacco and quality of tobacco leaf[J]. Journal of Agricultural Science and Technology,19(10): 73-81.]

刘领,王艳芳,宋久洋,周俊学,王小东,陈明灿. 2016. 生物炭与氮肥减量配施对烤烟生长及土壤酶活性的影响[J]. 河南农业科学,45(2): 62-66. [Liu L,Wang Y F,Song J Y,Zhou J X,Wang X D,Chen M C. 2016. Effects of biochar addition combined with reducing nitrogen application rate on growth of flue-cured tobacco and soil enzyme activities[J]. Journal of Henan Agricultural Scien-ces,45(2): 62-66.]

刘晓雨,卞荣军,陆海飞,郑聚锋,程琨,李恋卿,张旭辉,潘根兴. 2018. 生物质炭与土壤可持续管理: 从土壤问题到生物质产业[J]. 中国科学院院刊,33(2): 184-190. [Liu X Y,Bian R J,Lu H F,Zheng J F,Cheng K,Li L Q,Zhang X H,Pan G X. 2018. Biochar for sustainable soil management: biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Scien-

ces,33(2): 184-190.]

刘玉学,刘微,吴伟祥,钟哲科,陈英旭. 2009. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报,20(4): 977-982. [Liu Y X,Liu W,Wu W X,Zhong Z K,Chen Y X. 2009. Environmental behavior and effect of biomass-derived black carbon in soil: A review[J]. Chinese Journal of Applied Ecology,20(4): 977-982.]

刘月华,孙玉晓,张英,吴锦志,尹忠春,彭五星. 2016. 不同生物质炭对烤烟青枯病发病情况及烟叶生长的影响[J]. 湖北农业科学,55(10): 2492-2495. [Liu Y H,Sun Y X,Zhang Y,Wu J Z,Yin Z C,Peng W X. 2016. Effects of different biochar on the incidence of tobacco bacterial wilt and flue-cured tobacco growth[J]. Hubei Agricultural Scienses,55(10): 2492-2495.]

牛桂言,邵惠芳,朱金峰,黄五星,许自成,郭利. 2017. 我国植烟土壤修复的研究进展[J]. 中国农业科技导报,19(3): 115-122. [Niu G Y,Shao H F,Zhu J F,Huang W X,Xu Z C,Guo L. 2017. Research progress on tobacco-plan-ting soil restoration in China[J]. Journal of Agricultural Science and Technology,19(3): 115-122.]

潘根興,李恋卿,刘晓雨,程琨,卞荣军,吉春颖,郑聚峰,张旭辉,郑金伟. 2015. 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径[J]. 科技导报,33(13): 92-101. [Pan G X,Li L Q,Liu X Y,Cheng K,Bian R J,Ji C Y,Zheng J F,Zhang X H,Zheng J W. 2015. Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China[J]. Science & Technology Review,33(13): 92-101.]

邱良祝,朱脩玥,马彪,李恋卿,潘根兴. 2017. 生物质炭热解炭化条件及其性质的文献分析[J]. 植物营养与肥料学报,23(6): 1622-1630. [Qiu L Z,Zhu X Y,Ma B,Li L Q,Pan G X. 2017. Literature analysis on properties and pyrolyzing conditions of biochars[J]. Plant Nutrition and Fertilizer Science,23(6): 1622-1630.]

穰中文,朱三荣,田峰,袁谋志,陈武,戴林建. 2018. 不同种植模式烟田土壤细菌种群特征与青枯病发生的关系[J]. 湖南农业大学学报(自然科学版),44(1): 33-38. [Rang Z W,Zhu S R,Tian F,Yuan M Z,Chen W,Dai L J. 2018. Relationship between soil bacterial population cha-racteristics and bacterial wilt in tobacco field under diffe-rent planting patterns[J]. Journal of Hunan Agricultural University(Natural Science),44(1): 33-38.]

任天宝,杨艳东,高卫锴,李宙文,阎海涛,王省伟,刘国顺. 2018. 基于高通量测序的生物炭施用量对植烟土壤细菌群落的影响[J]. 河南农业科学,47(12): 64-69. [Ren T B,Yang Y D,Gao W K,Li Z W,Yan H T,Wang S W,Liu G S. 2018. Effects of application amount of biochar on soil bacterial community in tobacco fields based on high-throughput sequencing[J]. Journal of Henan Agricultural Sciences,47(12): 64-69.]

邵慧芸,张阿凤,王旭东,郝珊,张艳玲. 2019. 两种生物炭对烤烟生长、根际土壤性质和微生物群落结构的影响[J]. 环境科学学报,39(2): 537-544. [Shao H Y,Zhang A F,Wang X D,Hao S,Zhang Y L. 2019. Effects of two kinds of biochar on the flue-cured tobacco growth,soil properties and microbial community structure of rhizosphere soil[J]. Acta Scientiae Circumstantiae,39(2): 537-544.]

施河丽,向必坤,谭军,彭五星,孙玉晓,王瑞,吴文昊,魏国胜,丁才夫. 2018. 烟草青枯病发病烟株根际土壤细菌群落分析[J]. 中国烟草学报,24(5): 57-65. [Shi H L,Xiang B K,Tan J,Peng W X,Sun Y X,Wang R,Wu W H,Wei G S,Ding C F. 2018. Analysis of bacterial community in rhizosphere soil of bacterial wilt diseased tobacco plant[J]. Acta Tabacaria Sinica, 24(5): 57-65.]

孙思,王军. 2005. 青枯病发病率与土壤条件关系的研究进展[J]. 江西植保,28(1): 17-20. [Sun S,Wang J. 2005. Research progress on the relationship between the incidence of bacterial wilt and soil conditions[J]. Jiangxi Plant Protection,28(1): 17-20.]

王成己,陈庆荣,陈曦,唐莉娜,刘岑薇,宋铁英,黄毅斌. 2017a. 烟秆生物质炭对烟草根际土壤养分及细菌群落的影响[J]. 中国烟草科学,38(1): 42-47. [Wang C J,Chen Q R,Chen X,Tang L N,Liu C W,Song T Y,Huang Y B. 2017a. Effects of tobacco stalk-derived biochar on rhizosphere soil nutrients and bacterial communities in the tobacco field[J]. Chinese Tobacco Science,38(1): 42-47.]

王成己,李洁静,黄毅斌. 2018a. 农作物秸秆炭化还田—土壤改良技术研究与应用——以“三聚环保”模式为例[J]. 福建农业科技,(10): 30-35. [Wang C J,Li J J,Huang Y B. 2018a. Research and application of soil improvement technology by returning carbonized crop straw to field——Taking the “Beijing Sanju Environmental Protection” mode as an example[J]. Fujian Agriculture and Technology,(10): 30-35.]

王成己,唐莉娜,黄毅斌. 2018b. 生物质炭调控烟草连作障碍的研究进展[J]. 福建农业科技,(4): 7-12. [Wang C J,Tang L N,Huang Y B. 2018b. Progress in the regulation effe-cts of biochar on continuous cropping obstacles in tobacco[J]. Fujian Agriculture and Technology,(4):7-12.]

王成己,吴志丹,胡忠良,唐莉娜,刘岑薇,黄毅斌. 2017b. 炭化温度和时间对烟秆生物质炭微观结构和理化性质的影响[J]. 福建农业学报,32(7): 774-778. [Wang C J,Wu Z D,Hu Z L,Tang L N,Liu C W,Huang Y B. 2017b. Effects of pyrolytic time and temperature on microstructure,physical and chemical properties of biochar made from tobacco straws[J]. Fujian Journal of Agriculture Sciences,32(7): 774-778.]

吴嘉楠,彭桂新,杨永锋,任天宝,张璐,刘国顺. 2018. 生物炭与氮肥配施对土壤生物特性和烤烟氮素吸收的影响[J]. 中国烟草学报,24(3):53-61. [Wu J N,Peng G X,Yang Y F,Ren T B,Zhang L,Liu G S. 2018. Effects of mined biochar and nitrogen fertilizer on biological characteristics of soil and nitrogen absorption of flue-cured tobacco[J]. Acta Tabacaria Sinica,24(3):53-61.]

吴志丹,尤志明,江福英,张磊,黄毅斌,王成己. 2015. 不同温度和时间炭化茶树枝生物炭理化特征分析[J]. 生态与农村环境学报,31(4): 583-588. [Wu Z D,You Z M,Jiang F Y,Zhang L,Huang Y B,Wang C J. 2015. Physico-chemical properties of tea-twig-derived biochars different in temperature and duration of pyrolysis[J]. Journal of Ecology and Rural Environment,31(4): 583-588.]

夏体渊,陈泽斌,靳松,赵凤,王定康,郭丽红,徐胜光. 2017. 生物炭不同施用量对烟草内生细菌多样性的影响[J]. 西南农业学报,30(12): 2711-2716. [Xia T Y,Chen Z B,Jin S,Zhao F,Wang D K,Guo L H,Xu S G. 2017. Effect of different biochar application rates on diversity of tobacco endophytic bacteria[J]. Southwest China Journal

of Agricultural Sciences,30(12): 2711-2716.]

夏艷,徐茜,董瑜,林勇,孔凡玉,张成省,王静,宋毓峰. 2014. 烟草青枯病菌拮抗菌的筛选、鉴定及生防特性研究[J]. 中国生态农业学报,22(2): 201-207. [Xia Y,Xu Q,Dong Y,Lin Y,Kong F Y,Zhang C S,Wang J,Song Y F. 2014. Screening,identification and characterization of antagonistic bacteria against Ralstonia solanacearum[J]. Chinese Journal of Eco-Agriculture,22(2): 201-207.]

向立刚,周浩,汪汉成,李震,陈乾丽,余知和. 2019. 健康与感染青枯病烟株不同部位细菌群落结构与多样性[J/OL]. 微生物学报. https://doi.org/10.13343/j.cnki.wsxb.2018 0524. [Xiang L G,Zhou H,Wang H C,Li Z,Chen Q L,Yu Z H. 2019. Community structure and diversity of bacteria in different parts of healthy and bacterial wilt toba-cco plants[J/OL]. Acta Microbiologica Sinica. https://doi.org/10.13343/j.cnki.wsxb.20180524.]

肖和友,李宏图,杨勇,邓建功,阳雄灿. 2018. 烟草废弃物生物质炭对植烟土壤、烤烟生长及经济效益的影响[J]. 湖南农业科学,(6): 36-39. [Xiao H Y,Li H T,Yang Y,Deng J G,Yang X C. 2018. Effects of tobacco waste biochar on the growth and economic benefits of tobacco and tobacco-planting soil[J]. Hunan Agriculture Sciences,(6): 36-39.]

谢永辉,张永贵,朱利全,尤道贵,鲁耀. 2015. 烟草黑胫病综合防治研究进展[J]. 生物技术进展,5(1): 41-46. [Xie Y H,Zhang Y G,Zhu L Q,You D G,Lu Y. 2015. Research advances in integrated management of tobacco black shank[J]. Biotechnology Progress,5(1): 41-46.]

谢祖彬,刘琦,许燕萍,朱春悟. 2011. 生物炭研究进展及其研究方向[J]. 土壤,43(6): 857-861. [Xie Z B,Liu Q,Xu Y P,Zhu C W. 2011. Advances and perspectives of biochar research[J]. Soils,43(6): 857-861.]

许大凤,倪海军,季学军,李田,高正良,王芳,周本国. 2016. 烟草青枯病拮抗菌的筛选及发酵条件试验[J]. 烟草科技,49(3): 24-29. [Xu D F,Ni H J,Ji X J,Li T,Gao Z L,Wang F,Zhou B G. 2016. Screening and fermentation conditions of antagonistic bacterium against tobacco bacterial wilt[J]. Tobacco Science & Technology,49(3): 24-29.]

姚领爱,胡之璧,王莉莉,周吉燕,黎万奎. 2010. 植物内生菌与宿主关系研究进展[J]. 生态环境学报,19(7): 1750-1754. [Yao L A,Hu Z B,Wang L L,Zhou J Y,Li W K. 2010. Research development of the relatioship between plant endophyte and host[J]. Ecology and Environmental Sciences,19(7): 1750-1754.]

袁金华,徐仁扣. 2010. 稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J]. 生态与农村环境学报,26(6): 472-476. [Yuan J H,Xu R K. 2010. Effects of rice hull based biochar regulating acidity of red soil and yellow brown soil[J]. Journal of Ecology and Rural Environment,26(6): 472-476.]

曾维爱,龙世平,李宏光,彭福元,黄艳宁. 2011. 苗期接种不同丛枝菌根真菌对烟草青枯病防治效果的影响[J]. 南方农业学报,42(6): 612-615. [Zeng W A,Long S P,Li H G,Peng F Y,Huang Y N. 2011. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco[J]. Journal of Sou-thern Agriculture,42(6): 612-615.]

张超. 2016. 绿肥—烟草轮作对土壤细菌多样性和烟草青枯病发生的影响研究[D]. 长沙:湖南农业大学. [Zhang C. 2016. The impacts of green manure-tobacco crop rotation on diversity of soil bacteria and disease occurrence of tobacco bacterial wilt[D]. Changsha:Hunan Agricultural University.]

張弘,李影,张玉军,朱金峰,刘世亮,申凤敏,刘芳,姜桂英. 2018. 生物炭对不同氮水平下烤烟生长发育、碳氮代谢及品质的影响[J]. 浙江农业科学,59(2): 224-230. [Zhang H,Li Y,Zhang Y J,Zhu J F,Liu S L,Shen F M,Liu F,Jiang G Y. 2018. Effects of biochar on growth,carbon and nitrogen metabolism and quality of flue-cured tobacco under different nitrogen levels[J]. Journal of Zhe-jiang Agricultural Sciences,59(2): 224-230.]

張璐,阎海涛,任天宝,李帅,杨永锋,彭桂新,于建春,刘国顺. 2019. 有机物料对植烟土壤养分、酶活性和微生物群落功能多样性的影响[J]. 中国烟草学报,25(2): 55-62. [Zhang L,Yan H T,Ren T B,Li S,Yang Y F,Peng G X,Yu J C,Liu G S. 2019. Effects of organic matter on nu-trient,enzyme activity and functional diversity of microbial community in tobacco planting soil[J]. Acta Tabaca-ria Sinica, 25(2): 55-62.]

张梦旭,潘明明,胡珑瀚,刘国庆,周开燕,古力,张重义. 2017. 内生菌的功能及在烟草上的研究进展[J]. 烟草科技,50(11): 105-112. [Zhang M X,Pan M M,Hu L H,Liu G Q,Zhou K Y,Gu L,Zhang C Y. 2017. Function of endophytes and their corresponding functions on tobacco[J]. Tobacco Science & Technology,50(11): 105-112.]

张鹏,李盼盼,高林,杜咏梅,刘新民,张忠锋,申国明. 2017. 烟草内生真菌多样性及其功能研究进展[J]. 中国烟草科学,38(2): 93-99. [Zhang P,Li P P,Gao L,Du Y M,Liu X M,Zhang Z F,Shen G M. 2017. Research advances on biodiversity and functions of tobacco endophytic fungi[J]. Chinese Tobacco Science,38(2): 93-99.]

章文水,张瀛,王雪仁,林建麒. 2019. 不同土壤改良措施对植烟土壤理化性状及烟草青枯病的影响[J]. 中国烟草科学,40(2):16-22. [Zhang W S,Zhang Y,Wang X R,Lin J Q. 2019. Effects of different soil improvement measures on physicochemical properties of soil and bacterial wilt of tobacco[J]. Chinese Tobacco Science,40(2): 16-22.]

郑世燕,丁伟,陈弟军,杜根平,徐小洪,谢华东. 2013. 根际土壤调控对连作烟田青枯病的控制作用[J]. 中国烟草学报,19(1): 47-52. [Zheng S Y,Ding W,Chen D J,Du G P,Xu X H,Xie H D. 2013. Bacterial wilt control in continuously cropped tobacco field by manipulation of rhizosphere soil[J]. Acta Tabacaria Sinica, 19(1): 47-52.]

郑世燕,丁伟,杜根平,杨亮,刘晓姣,张永强. 2014. 增施矿质营养对烟草青枯病的控病效果及其作用机理[J]. 中国农业科学,47(6): 1099-1110. [Zheng S Y,Ding W,Du G P,Yang L,Liu X J,Zhang Y Q. 2014. Control efficacy and action mechanism of mineral nutrition on tobacco bacterial wilt[J]. Scientia Agricultura Sinica,47(6): 1099-1110.]

Antal M J,Gronli M. 2003. The art,science and technology of charcoal production[J]. Industrial and Engineering Che-mistry,42: 1619-1640.

Bonilla N, Gutiérrez-Barranquero J A, de Vicente A, Francisco M C. 2012. Enhancing soil quality and plant health through suppressive organic amendments[J]. Diversity,4(4): 475-491.

Chen S,Qi G F,Luo T,Zhang H C,Jiang Q K,Wang R,Zhao X Y. 2018. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils[J]. Land Degradation & Development,29(11): 4106-4120.

Chun Y,Sheng G Y,Cary T C,Xing B S. 2004. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology,38(17): 4649-4655.

Cornelissen G,Kukulska Z,Kalaitidis S,Christanis K,Gustafsson O. 2004. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science and Technology,38(13): 3632-3640.

Dordas C. 2008. Role of nutrients in controlling plant disease in sustainable agriculture: A review[J]. Agronomy for Sustainable Development,28(1): 33-46.

Li X G,Ding C F,Zhang T L,Wang X X. 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut mono culturing[J]. Soil Biology and Biochemistry,72: 11-18.

Liu Y X,Li X,Cai K,Cai L T,Lu N,Shi J X. 2015. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology,93:78-87.

McGarvey J A,Denny T P,Schell M A. 1999. Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars[J]. Phytopathology,89(12): 1233-1239.

Ozcimen D. 2010. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy,35: 1319-1324.

Wang M,Zheng Q S,Shen Q R,Guo S W. 2013. The critical role of potassium in plant stress response[J]. Internatio-nal Journal of Molecular Sciences,14(4): 7370-7390.

Wu P,Ata-Ul-Karim S T,Singh B P,Wang H L,Wu T L,Liu C,Fang G D,Zhou D M,Wang Y J,Chen W F. 2019. A scientometric review of biochar research in the past 20 years(1998–2018)[J]. Biochar,1(1): 23-43.

(責任编辑 麻小燕)

猜你喜欢

病原菌
细菌性食物中毒的病原菌调查与预防浅谈
植物免疫系统“合作”御敌
茶树炭疽病的研究进展
早产儿与足月儿发生新生儿败血症的特点比较
一种烟草细菌性病害病原菌分离培养及致病性测定
重症监护病房患者下呼吸道感染病原菌的分布特点及耐药性分析
肝硬化并自发性腹膜炎腹水培养的病原菌及耐药性分析
重症监护病房医院获得性感染病原菌分布情况及耐药性特点研究
肺癌并发肺部感染患者痰培养分离的病原菌分布特征及耐药性特征研究